
Smooth Force Rendering on Coarse
Polygonal Meshes

Jun Wu, Yuen-Shan Leung, Charlie C.L. Wang∗, Dangxiao Wang, and Yuru Zhang

Abstract
Piecewise linear polygonal model has only G0

continuity, thus users can easily feel the edges
when using haptic device to touch a solid rep-
resented by coarse polygonal meshes. To pro-
duce an appealing haptic sensation for smooth
solids, a large number of polygons are needed in
conventional approaches. This however slows
down computation and consumes much more
memory. In this paper, we present a method
to generate smooth feedback force in haptic in-
teraction with coarse polygonal meshes. Our
method calculates the interaction force based on
Gregory patches, which are locally constructed
from n-sided polygons and ensure G1 continu-
ity across boundaries of patches. During the
real time haptic interaction, the contact point is
continuously tracked on the locally constructed
Gregory patches and thus generates smooth
haptic forces to be rendered. Our method is
validated on various models with comparison
to conventional force rendering techniques.
Keywords: force rendering, Gregory patch, G1

continuity, coarse mesh, n-sided polygon

1 Introduction

In computer haptics, the geometry model of
an object is usually represented by polyg-
onal meshes (i.e., G0 piecewise linear sur-
faces). When applying the penetration-depth
based force rendering method on coarse polygo-
nal meshes, discontinuous feedback force will
be produced if the contact point slips across

∗Correspondence to: Charlie C. L. Wang, Department of
Mechanical and Automation Engineering, The Chinese
University of Hong Kong, Shatin, NT, Hong Kong,
China. E-mail: cwang@mae.cuhk.edu.hk

the edge – this is described simply as edge ef-
fect below. Although force shading [1] (sim-
ilar to Phong shading in visual rendering) and
its variants [2, 3] can be applied to weaken this
kind of edge effect, some researchers (ref. [4])
found that the force discontinuity caused by the
G0 shape of polygonal model can still be per-
ceived by users. This will badly affect human
performance in some specific applications (e.g.,
[3, 5]).

In conventional approaches, a large number
of polygons are needed to produce an appeal-
ing haptic sensation. This consumes more mem-
ory and decreases computational efficiency. For
example, a virtual environment of a whole set
of teeth (see Fig.1) in medical simulation needs
more than tens of thousands of triangles to make
the force rendering feel smooth (i.e., realistic).

To eliminate edge effect completely and thus
produce smooth feedback force, we present a
penetration-depth based force rendering method
on Gregory patches, which are constructed lo-
cally from the input polygonal meshes and have
the property of G1 continuity. The feedback
force is directly computed on the patches. The
main advantages of our method are as follows.

Smooth feedback force This is obvious as our
method directly computes the feedback force
based on G1 continuous surfaces.

Compact representation For curved surfaces
with high curvature, a massive number of piece-
wise linear meshes are needed to approximate
the solid in a haptically appealing manner. How-
ever, as the Gregory patch is a high order poly-
nomial, the number of basic meshes needed to
represent a smooth object can be greatly reduced
while still producing a smooth geometry, and

Figure 1: The example of teeth model in the dental contact simulation: (left) the polygonal mesh with
39,920 triangles, (middle) the coarse polygonal mesh with only 1,805 polygons, and (right)
the patches generated by our method from the coarse polygonal mesh. The upper bar-graphs
show the magnitude of difference vectors between consecutive forces during the simulation.
Here, the contact point of haptic device is moved across the surface of a tooth along the red
trajectory. The top row of bar-graphs (in black) are generated using direct rendering [6],
and the second row of bar-graphs (in red) are measured on the forces generated by the force
shading method [1]. Differently, our method can generate very smooth force on very coarse
mesh surfaces.

thus resulting in smooth feedback force.

Local construction The construction of a Gre-
gory patch for a mesh is totally based on local
information (i.e., the position and normal of ver-
tices on its corresponding polygon). Therefore,
efficient computation and memory usage can be
achieved.

n-sided polygon input The patch construc-
tion is based on blending of the corner interpo-
lation functions defined on polygons. It is un-
like other Gregory patch construction methods
that are restricted to quadrangles (e.g., [7]) or
triangles-and-quadrangles (e.g., [8]). The input
mesh model can have n-sided polygons for any
n > 2, and we avoid the problem of inserting
lines to split polygons to triangles and/or quad-
rangles.

2 Related Work

2.1 Force rendering

Polygonal mesh is the most prevalent geom-
etry representations in computer graphics and

receives the widest attention in the haptics re-
search, ranging from point-object [6], line-
object [9, 10], to object-object interaction [11,
12]. Zilles et al. [6] proposed the penetration-
depth based implementation called god-object
method for point-object interaction, where the
user’s position is represented by a single point.
For convenience, the point representing actual
human motion is denoted by haptic interface
point (HIP) as it is obtained through the hap-
tic interface. The god-object which stays on the
surface of the solid is denoted by surface contact
point (SCP). SCP is typically a local nearest
point from the surface to the HIP . The feed-
back force is calculated based on the difference
vector between these two points. As shown in
Fig. 2(a), when the HIP slips across the edge,
this method will generate discontinuous feed-
back force as the polygon model is only G0 con-
tinuous.

This problem of edge effect was first ad-
dressed by Morgenbesser et al. [1] using a
method similar to the Phong shading in visual
rendering (see Fig. 2(b)). The shading method
is computationally fast and can partly eliminate

Human

motion
HIP

SCP

F

Surface

of object

(a) The basic implementation of direct force rendering [6].
Force vector points from the haptic interface point to the
nearest point on the surface.

Human

motion

Interpolated

normal

(b) Force shading [1] is similar to Phong shading. The di-
rection of force is altered to the smoothed normal at the
nearest point.

Human

motion

G^1 continuous

primitive

(c) Our patch based force rendering. The feedback force
is pointing to a nearest point on the locally constructed G1

continuous patch.

Figure 2: Illustration of different force render-
ing approaches.

the edge effect. However, in this approach, the
mapping from HIP s to the SCP s is still not
continuous, thus modifying the force direction
cannot fundamentally solve the force disconti-
nuity problem, especially when the penetration
depth is large and the corner is very sharp. Hu-
man evaluation results [4] show that users can
still feel the edge effect even after using the
force shading method. A variation of the force
shading was proposed by Ho et al. in [2], and
another improvement for convex solids was in-
troduced by Ruspini et al. in [13]. Neither of
these variations fundamentally solves the prob-
lem as they still rely on the G0 continuous shape.

Volumetric model such as distance field [14]
provides a straightforward way to perform colli-
sion detection and force calculation based on the
penetration-depth/volume of two objects. Re-
cently, Li et al. [15] adopted the C1 contin-
uous distance field for point-solid interaction.
However, the computation of distance field (es-
pecially the one with C1 continuity) is time-
consuming. Moreover, the shape that can be pre-
sented by a distance field is also restricted by its

resolution.
Force rendering based on point set surface

was introduced by Lee et al. in [16]. Guo et
al. [17] also proposed a modeling system based
on a combination of point set surface and dy-
namic physics-based sculpting. The point set
surface benefits from no explicit topology infor-
mation but meanwhile makes it difficult to ex-
tend the method to more complicated interaction
scenarios.

Parametric representation such as NURBS
has also been applied in haptics (e.g., [18] by
Thompson et al.). Converting existing preva-
lent polygon models to NURBS needs global
parametrization which is not a trivial task. Our
method locally constructs the parametric sur-
face (i.e., Gregory patch) for every polygon ef-
ficiently and is suitable for parallelization and
on-site construction.

The proposed approach addresses the prob-
lem of smooth force rendering from the geom-
etry aspect. An expectation is that the generated
Gregory patches model is more realistic than the
base coarse polygon model with respect to the
original object. Some other approaches, such as
threshold filter, and virtual coupling [19] which
acts as a kind of filter in some way, may also
help to generate smoother force signal than di-
rectly on polygonal meshes. However, the re-
alism after the filter needs further investigation.
Moreover, the non-linear property of the filters
makes the tuning of parameters herein not a triv-
ial task.

2.2 Gregory patch

To construct a G1 continuous surface for each
polygon, Gregory corner interpolator function
must be constructed for every corner of an n-
sided polygon at first. Then, the final surface for
this polygon is blended as a weighted sum of the
n functions.

As illustrated in Fig.3, let P (u)(0 ≤ u ≤ 1)
and Q(v)(0 ≤ v ≤ 1) be two regular curves in
<3 with P (0) = Q(0), and TP (u)(0 ≤ u ≤
1) and TQ(v)(0 ≤ v ≤ 1) be two C1 vector
functions in <3 satisfying

TP (0) = Q′(0), TQ(0) = P ′(0), (1)

the Gregory corner interpolator of the four func-
tions, P (u), Q(v), TP (u) and TQ(v), is a sur-

)(vQ

u

)(vT
Q

v

)(uT
P

)(uP

Figure 3: Gregory corner interpolator.

1k
C

0
C

k
C

1k
C

X

1k
d

k
d

Figure 4: Parametric domain of a Gregory patch.

face in <3 defined by

r(u, v) = −P (0)− vTP (0)− uTQ(0)
+P (u) + vTP (u) + Q(v) + uTQ(v)
−uv(vT ′P (0) + uT ′Q(0))/(u + v).

(2)

The Gregory corner interpolator function r(u, v)
agrees with P (u) and Q(v) along the two sides
(i.e., r(u, 0) = P (u) and r(0, v) = Q(v)).
Also, its partial derivatives with respect to u and
v agree with TP (u) and TQ(v) along the respec-
tive sides as ru(u, 0) = TP (u) and rv(0, v) =
TQ(v).

After setting up the corner interpolator for ev-
ery corner of a polygon, the next step is to blend
them to form a parametric surface. The para-
metric domain of a Gregory patch, denoted as
PG, with n sides is defined as a regular n-gon in
a unit circle in the ξ − η domain (as shown in
Fig. 4). The corners Ck(k = 0, 1, ..., n − 1)
are placed in the anti-clockwise order. Given
a point X(ξ, η) in the parametric space, when
computing its position defined by the k-th Gre-
gory corner rk(uk, vk) the parameters (uk, vk)
of the point are defined as

(uk, vk) =
(

dk−1

dk−1 + dk+1
,

dk

dk−2 + dk

)
, (3)

where dk is the perpendicular distance from X
to the edge CkCk+1. The corner Ck is defined
by Ck = (cos 2kπ

n , sin 2kπ
n), where n is the num-

ber of corners and k = 0, 1, ..., n− 1.

Curved modelNormal

Cross tangent Patch

Figure 5: Gregory patch of a 5-sided polygon

The Gregory patch for a n-sided polygon is
defined as a mapping from the parametric do-
main PG to <3 by

G(X) =
m−1∑

k=0

wk(X)rk (uk(X), vk(X)) (4)

where the weight function is

wk(X) =

∏
j 6=k−1,k

d2
j

j−1∑
l=0

∏
j 6=l−1,l

d2
j

. (5)

3 Local Construction of Gregory
Patch

To construct the patches that are joined together
with G1 continuity, the derivatives of two neigh-
boring patches sharing a common curve must be
coplanar with the tangent of the common curve
(i.e., G1 continuity across the boundary). The
tangent vectors of curves joining to a vertex on
the given model must also be located on the
same plane (i.e., G1 continuity is preserved at
the vertices of given coarse polygonal meshes).
Moreover, the construction of boundary curves
and cross tangent functions is expected to be lo-
calized. An example of 5-sided Gregory patch
constructed from a polygon is shown in Fig.5.

3.1 Curve modeling

The curve on a polygonal edge with two vertices
vsve is defined by a Hermite curve

C(t) = (2t3 − 3t2 + 1)vs + (−2t3 + 3t2)ve

+L(t3 − 2t2 + t)ts + L(t3 − t2)te

(6)

where t ∈ [0, 1], L = ‖vsve‖ is the length of
edge vsve, and ts and te are tangent vectors of
the Hermite curve presented at vs and ve respec-
tively. To ensure the G1 continuity at vertices,
the tangent vectors ts and te must satisfy that
ts · nvs = 0 and te · nve = 0 with nvs and nve

being the vertex normals defined at vs and ve.
To satisfy these constraints, we define them by

navg = (nvs + nve)/2, (7)

ts =
nvs × ((vsve)× navg)
‖nvs × ((vsve)× navg)‖ , (8)

te =
nve × ((vsve)× navg)
‖nve × ((vsve)× navg)‖ . (9)

3.2 Cross tangent modeling

The cross tangent functions must be C1 continu-
ous and satisfy Eq.(1). To guarantee the G1 con-
tinuity across the boundary curve defined above,
the cross tangents on two sides of C(t) should
be coplanar with C′(t). Therefore, we define a
function to specify the normal vector of the re-
constructed surface at any point of the common
boundary curve. The defined normal must be
perpendicular to C′(t) and interpolates nvs and
nve at vs and ve.

The normal of the reconstructed surface on
the Hermite curve C(t) is defined by

nc(t) = C′(t)× (((1− t)nvs + tnve)× vsve).
(10)

The direction of the cross tangent perpendicular
to nc(t) can then be expressed as

tc(t) = nc(t)× (vint(t)× nint(t)) (11)

with

vint(t) = (1− t)v−s + tv+
e −C(t), (12)

nint(t) =
1
2
((1− t)nv−s + tnv+

e
+nc(t)). (13)

Figure 6: The Gregory patches are only con-
structed at the region near the contact
point – the yellow region. Note that,
the flat shading is employed to display
(visually) the polygons, while in real
applications the Phong shading will be
used to improve the visual rendering.

Here v−s denotes the previous vertex of vs and
v+

e represents the next vertex of ve on the poly-
gon. nv−s and nv+

e
are vertex normals defined

on v−s and v+
e respectively. Considered that the

magnitude of the cross tangent should satisfy
Eq.(1), we have the cross tangent function de-
fined on C(t) as

TC(t) = ((1−t)Lprev+tLnext)
tc(t)
‖tc(t)‖ , (14)

where Lprev and Lnext are the lengths of the
edges v−s vs and vev+

e . It is easy to prove that
TC(t) and C′(t) are perpendicular to nc(t), and
we have

TC(0) = Lprev
tc(0)
‖tc(0)‖ = C′

prev(1)

and

TC(1) = Lnext
tc(1)
‖tc(1)‖ = C′

next(0)

so that the constraints in Eq.(1) are satisfied.

4 Patch-based Force Rendering

The avatar of the user (the end effector of hap-
tic device) is expressed as a single point, and the
object being touched is represented by Gregory
patches that are locally constructed from polyg-
onal meshes. The status of the relationship be-
tween the avatar point and the object is classified
as contact status and non-contact status. The

contact status starts when the avatar point pen-
etrates into the object and the status holds un-
til the avatar point leaves the object. Feedback
force is calculated based on the penetration-
depth. The simulation flow is given in the Al-
gorithm 1. Note that, during the simulation, the
Gregory patches are only constructed at the re-
gion near the avatar (see Fig.6 for an example).

Algorithm 1 Force rendering loop
1: if status == non-contact then
2: Search the global nearest point
3: Determine whether penetration
4: if penetration then
5: status = contact
6: contact point = the global nearest point
7: Calculate the feedback force
8: else
9: status = non-contact

10: end if
11: else
12: Track the local nearest point around con-

tact point
13: Determine whether still penetration
14: if penetration then
15: status = contact
16: contact point = the local nearest point
17: Calculate the feedback force by

SCP-HIP
18: else
19: status = non-contact
20: end if
21: end if

4.1 Initialization

Given a point P , and a surface S composed of
patches, we need to find the nearest point on the
surface to the point. Analytic method of near-
est point query for a parametric surface is heavy
in computation [20]. Our method determines
the initial location of the nearest point using an
approximate geometry model, and refines it nu-
merically. For the approximate model for initial
query, we simply employ the base polygons of
the object. There are three steps in this initial-
ization step. First, we need to find the global
nearest point on the polygons. Many algorithms
have been developed to solve this problem, such

1i
HIP

),(001 GSCP
i

i
HIP

The descending

direction of distance

Figure 7: 3D illustration of the refinement step.

as PQP [21] we used. Second, we locally con-
struct a Gregory patch for this polygon using the
method described in last section. Third, we map
the point on the polygon to a point on the patch.
This point on the patch then serves as the initial
global nearest point on the patches.

4.2 Local nearest point refinement

When the user slides along the surface, the sim-
ulator should try to find the local nearest point
on the surface to the avatar and calculate the
feedback force. The local nearest point, rather
than the global nearest point, is adopted in haptic
rendering because it prevents the undesired pop-
through effect on thin objects. Therefore, given
an initial surface contact point SCPi−1 on the
patch and the current position of the avatar point
HIPi, we try to find a local nearest point SCPi

in the surface to the point HIPi.
The problem is solved in an iterative manner.

As our surface is a parametric one, we could
search around the SCPi−1’s parameter coordi-
nate (ξ0, η0) locally. As illustrated in Fig. 7,
the method is to project the HIPi to the tan-
gent plane of the point SCPi−1, and find the
descending direction of distance by numerical
differences, (α, β), in the parametric domain.
The parametric coordinate is moved forward for
a certain step ∆ in the descending direction to
(ξ1, η1) = (ξ0 + α∆, η0 + β∆). Then, the new
point is G(ξ1, η1), where G(· · ·) is the mapping
from parametric domain to <3. This process
is iteratively performed until the angle between
the vector from the point G(ξj , ηj) to HIPi and
the normal vector at G(ξj , ηj) is smaller than a
given threshold (e.g., 10−5), where j is the iter-
ative times. G(ξj , ηj) will serve as SCPi.

When smaller forward iteration step size is
applied, more precise result can be obtained by
taking the cost of more iteration time. Thus, it

jP

aP

bP
pP

pbP

paP

iHIP

Figure 8: Adaptive forward gap for refining.

0

kC

0

0

0

1kC
0

O

jP

1

1
O

1

iC

0

GP
1

1

GP

0
I 1

1iC

1
I

Figure 9: Transition between the parametric do-
mains of two Gregory patches.

is better to choose the step size adaptively. Let
Pj = G(ξj , ηj) be the result after j times itera-
tion, Pa = G(ξj + ξa, ηj + ηa), Pb = G(ξj +
ξb, ηj + ηb) be other two points on the Gregory
patch near Pj , we can obtain the point Pp as the
projection of HIPi on the plane PaPbPj (see
the illustration in Fig.8). On the plane, we can
find two points Ppa (on line PjPa) and Ppb (on
line PjPb) to let PaPpa ‖ PjPb and PbPpb ‖
PjPa. The step size can then be chosen as
(αξa + βξb, αηa + βηb), where α = ‖Ppa−Pj‖

‖Pa−Pj‖ ,

β = ‖Ppb−Pj‖
‖Pb−Pj‖ . Also, the surface normal at Pj

can be approximated by PaPj ×PbPj .

The parameters of the above Pa and Pb are
chosen near that of Pj , but are still in the para-
metric domain (i.e., inside the regular polygon).
This is because a singular surface will be gen-
erated if the point in the ξ − η domain is out-
side the regular polygon. We first determine the
corner Ck of the parametric polygon which is
closest to (ξj , ηj). If there are more than one
nearest corner, we randomly select one among
them. By choosing (ξa, ηa) = λ(Ck+1 − Ck)
and (ξb, ηb) = λ(Ck−1 −Ck) with λ = 0.1, we
can ensure that the new points (ξj + ξa, ηj + ηa)
and (ξj + ξb, ηj + ηb) are in the polygon. This
can be easily proved.

4.3 Transition across boundary

Although the above method can make the new
points near Pj defined in the same parametric
polygon, the new point position computed by it-
eration can still be moved into a new patch (i.e.,
when users slide across the boundary of two
patches). As illustrated in Fig.9, when the com-
puted Pj = G(ξj , ηj) runs out of the paramet-
ric domain, the contact point should be transited
to its neighboring patch. Suppose that the point
X = (ξj , ηj) lies in the fan area between O0C0

k

and O0C0
k+1 where the superscript denotes the

current parametric domain P 0
G, line O0Pj and

line C0
kC

0
k+1 intersect at a point I0 on the k-th

edge of the parametric polygon. If this edge is
shared by its neighboring patch whose paramet-
ric domain is P 1

G and the edge is the i-th edge on
P 1

G, we can easily map I0 to I1 by satisfying the

condition C0
kI0

I0C0
k+1

=
C1

i+1I
1

I1C1
i

. Thus, we have

I1 = C1
i +

I0 −C0
k+1

C0
k −C0

k+1

(
C1

i+1 −C1
i

)
. (15)

5 Results

We have implemented the proposed approach
by C++. OpenGL is adopted for graphical ren-
dering and OpenHaptics is employed as I/O for
the haptic device – Phantom Omni from Sen-
able Technology. Our test platform is a PC with
an Intel Pentium4 3.00GHz CPU and 2GB main
memory (see Fig.10). The PC is equipped with
a NVIDIA GeForce 7600 GS graphics card, and
runs Windows XP.

The first example shown in this paper is the
model of human teeth (see Fig.1), where the fine
mesh for a realistic force rendering by conven-
tional force rendering technique has around 40k
triangles. However, when using our approach,
smooth forces can be generated on a model with
only about 1.8k polygons. The second exam-
ple shown in Fig.11 is a banana model with only
about 409 polygons. Similar to Fig.1, the bar-
graphs of the magnitudes of difference vectors
between consecutive forces during the move-
ment are also shown in Fig.11. From the bar-
graphs, it is easy to find that our method gener-
ates the smoothest force when moving the con-
tact point along the same trajectory – the red

Figure 11: The force generated on a banana model with only 409 polygons using different methods:
(left) the direct rendering [6], (middle) the force shading approach [1], and (right) our
smooth force rendering by local Gregory patch construction. The models are visualized by
(left) flat shading, (middle) Phong shading and (right) the Gregory patches. The red curves
show the trajectories of contact point movement.

Figure 10: Our test platform with a PC and a
Phantom Omni.

curves in Fig.11. To mimic the force render-
ing results, the banana model is displayed in
three ways: flat shading, Phong shading and the
Gregory patches. Another interesting test con-
ducted in Fig.12 is to study the force continuity
with different penetration depths by using differ-
ent approaches. A torus knot model with 1,440
quadrangles is adopted for the test. The model
is offset inward by two different values: 2mm
and 4mm. Points on the offset surface are then
used as HIP for computing the forces. The re-
sults are graphically displayed by point render-
ing with the normalized force directions serv-
ing as normals of points. It is obvious that our
method produces the smoothest feedback forces.
Moreover, we can easily find that when increas-
ing penetration depth, the force discontinuity is
more significant on the results of the direct ren-
dering [6] and the force shading [1] methods.

Torus Depth = 2 mm Depth = 4 mm

Mesh

Phong

Shading

Patch

Figure 12: Study of force discontinuity on the
torus knot model with 1440 quad-
rangles using different methods and
with different penetration depths.
(Top row) direct rendering [6], (mid-
dle row) force shading based ren-
dering [1], and (bottom row) our
Gregory patch based force render-
ing. When increasing the penetration
depth, more significant force discon-
tinuity can be found on the results
of the direct rendering and the force
shading. Such discontinuity does not
appear in the results of our approach.

Figure 13 shows another similar study on a hand
model.

Our approach is very efficient in both com-
puting speed and memory consumption. For the
teeth example shown in Fig.1, similar smooth
feedback force can be generated on the dense
mesh by force shading and the coarse mesh by
our patch-based force rendering; however, the
memory cost for the dense mesh is around 10
times of that of the coarse mesh. The size of
model must be well controlled in the applica-
tions which need to send the model through
some channels (e.g., network or from main
memory to the graphics memory), where data
communication is still a bottleneck. Our Gre-
gory patch based force rendering approach is
fast. This is because G1 continuity preserved
Gregory patches can be constructed in a local
data-access manner from the given polygons and
the normal vectors on vertices. The average con-
struction time of a Gregory patch on our PC is
around 0.02 − 0.03ms. The Gregory patches
are only constructed near the region of contact
point, and only a few patches need to be con-
structed and stored during the movement of con-
tact point. The update frequency is higher than
1kHZ, so it satisfies the requirement of con-
tinuous force generation on the Haptic device
[22]. Moreover, the construction of Gregory
patches can be easily parallelized on the multi-
core CPUs or GPUs to further speed up the com-
putation.

6 Conclusion

We present a method for smooth force rendering
on coarse polygonal meshes in this paper. Our
method is based on the local construction of G1

continuous Gregory patches from the n-sided
polygons. During the real time haptic interac-
tion, the contact point is continuously tracked
on the locally constructed Gregory patches and
thus generates smooth haptic force to be ren-
dered. Our method has been compared with
conventional force rendering techniques. Exper-
imental results prove that the force rendered by
our method is much smoother without adding a
heavy cost on computing time and memory us-
age.

An interesting problem with the proposed

Depth = 1 mm Depth = 1.5 mm

Figure 13: Study of force discontinuity on a
hand model with 1272 quadrangles
using different methods and with dif-
ferent penetration depths. (Top row)
direct rendering [6], (middle row)
force shading based rendering [1],
and (bottom row) our Gregory patch
based force rendering.

method is how to preserve the feels of sharp fea-
tures. Method of feature preserving patch gen-
eration will be investigated in the near future.
Then it will be integrated into a uniform force
rendering approach based on patches.

Acknowledgements

This work is supported by the National Science
Foundation of China under grant No.60605027
and No.50575011, the National Hi-tech Re-
search and Development Program of China un-
der grant No.2007AA01Z310, the Hong Kong
RGC grant CUHK/417508, and the open project
– Research of GPU-Accelerated Force Render-
ing on Volumetric Model – of State Key Lab
of Virtual Reality Technology and Systems of
China.

References
[1] H.B. Morgenbesser and M.A. Srinivasan. Force

shading for haptic shape perception. In Pro-
ceedings of the ASME Dynamics Systems and
Control Division, pages 407–412, 1996.

[2] C.-H. Ho, C. Basdogan, and M.A. Srini-
vasan. Efficient point-based rendering tech-
niques for haptic display of virtual objects.
Presence: Teleoperators and Virtual Environ-
ments, 8(5):477–491, 1999.

[3] Y. Shon and S. McMains. Evaluation of draw-
ing on 3d surfaces with haptics. Computer
Graphics and Applications, IEEE, 24(6):40–
50, Nov.-Dec. 2004.

[4] Y. Shon and S. McMains. Haptic force shad-
ing parameter effects on path tracing accuracy.
In 14th Symposium on Haptic Interfaces for
Virtual Environment and Teleoperator Systems,
pages 517–523, March 2006.

[5] D. Wang, Y. Zhang, Y. Wang, Y.-S. Lee, P. Lu,
and Y. Wang. Cutting on triangle mesh: Local
model-based haptic display for dental prepa-
ration surgery simulation. IEEE Transac-
tions on Visualization and Computer Graphics,
11(6):671–683, 2005.

[6] C.B. Zilles and J.K. Salisbury. A constraint-
based god-object method for haptic display. In
IROS ’95: Proceedings of the International
Conference on Intelligent Robots and Systems,
volume 3, page 3146, 1995.

[7] M.A. Puso and T.A. Laursen. A 3d contact
smoothing method using gregory patches. In-
ternational Journal for Numerical Methods in
Engineering, 54(8):1161–1194, 2002.

[8] C. Loop, S. Schaefer, T. Ni, and I. Castaño. Ap-
proximating subdivision surfaces with gregory
patches for hardware tessellation. ACM Trans-
actions on Graphics (SIGGRAPH Asia 2009),
28(5):1–9, 2009.

[9] C.-H. Ho, C. Basdogan, and M.A. Srini-
vasan. Ray-Based Haptic Rendering: Force
and Torque Interactions between a Line Probe
and 3D Objects in Virtual Environments. The
International Journal of Robotics Research,
19(7):668–683, 2000.

[10] A. Maciel and Suvranu De. A new line-based
algorithm for real time haptic interactions with
virtual environments. In HAPTICS ’08: Pro-
ceedings of the 2008 Symposium on Haptic In-
terfaces for Virtual Environment and Teleoper-
ator Systems, pages 217–223, 2008.

[11] A. Gregory, A. Mascarenhas, S. Ehmann,
M. Lin, and D. Manocha. Six degree-of-
freedom haptic display of polygonal models. In
VIS ’00: Proceedings of the conference on Vi-
sualization, pages 139–146, 2000.

[12] D.E. Johnson, P. Willemsen, and E. Cohen. Six
degree-of-freedom haptic rendering using spa-
tialized normal cone search. IEEE Transac-
tions on Visualization and Computer Graphics,
11(6):661–670, 2005.

[13] D.C. Ruspini, K. Kolarov, and O. Khatib. The
haptic display of complex graphical environ-
ments. In SIGGRAPH ’97: Proceedings of the
24th annual conference on Computer graph-
ics and interactive techniques, pages 345–352,
1997.

[14] J. Barbic and D.L. James. Six-dof haptic ren-
dering of contact between geometrically com-
plex reduced deformable models. Haptics,
IEEE Transactions on, 1(1):39–52, 2008.

[15] W. Li, Y. Shon, and S. McMains. Haptic ren-
dering using c1 continuous reconstructed dis-
tance fields. In IEEE International Conference
on Shape Modeling and Applications, pages
163–170, June 2009.

[16] J.-K. Lee and Young J. Kim. Haptic rendering
of point set surfaces. In WHC ’07: Proceed-
ings of the Second Joint EuroHaptics Confer-
ence and Symposium on Haptic Interfaces for
Virtual Environment and Teleoperator Systems,
pages 513–518, 2007.

[17] X. Guo, J. Hua, and H. Qin. Touch-based
haptics for interactive editing on point set sur-
faces. IEEE Computer Graphics and Applica-
tions, 24(6):31–39, 2004.

[18] T.V. Thompson II, D.E. Johnson, and E. Cohen.
Direct haptic rendering of sculptured models.
In SI3D ’97: Proceedings of the symposium on
Interactive 3D graphics, pages 167–176, 1997.

[19] Lin M.C. Otaduy, M.A. A modular haptic ren-
dering algorithm for stable and transparent 6-
dof manipulation. Robotics, IEEE Transactions
on, 22(4):751 –762, Aug. 2006.

[20] Y.L. Ma and W. T. Hewitt. Point inversion and
projection for nurbs curve and surface: control
polygon approach. Computer Aided Geometric
Design, 20(2):79–99, 2003.

[21] E. Larsen, S. Gottschalk, M.C. Lin, and
D. Manocha. Fast proximity queries with swept
sphere volumes. In Proc. of Int. Conf. on
Robotics and Automation, pages 3719–3726,
2000.

[22] K. Salisbury, F. Conti, and F. Barbagli. Haptic
rendering: Introductory concepts. IEEE Com-
puter Graphics and Applications, 24(2):24–32,
2004.

