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Abstract
Virtual cutting of deformable bodies has been an important and active research topic in physically-based mod-
eling and simulation for more than a decade. A particular challenge in virtual cutting is the robust and efficient
incorporation of cuts into an accurate computational model that is used for the simulation of the deformable body.
This report presents a coherent summary of the state-of-the-art in virtual cutting of deformable bodies, focusing on
the distinct geometrical and topological representations of the deformable body, as well as the specific numerical
discretizations of the governing equations of motion. In particular, we discuss virtual cutting based on tetrahedral,
hexahedral, and polyhedral meshes, in combination with standard, polyhedral, composite, and extended finite
element discretizations. A separate section is devoted to meshfree methods. Furthermore, we discuss cutting-
related research problems such as collision detection and haptic rendering in the context of interactive cutting
scenarios. The report is complemented with an application study to assess the performance of virtual cutting
simulators.
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1. Introduction

Physically-based, yet efficient and robust simulation of cut-
ting of deformable bodies (also referred to as virtual cut-
ting) has been an important and active research topic in the
computer graphics community for more than a decade. It is
at the core of virtual surgery simulators, and it is also fre-
quently used in computer animation. A survey of early cut-
ting techniques has been given 10 years ago by Bruyns et
al. [BSM∗02], and since then a number of significant im-
provements with respect to physical accuracy, robustness,
and speed have been proposed. Our intention in the current
state-of-the-art report is to review the basic concepts and
principles underlying these techniques.

Virtual cutting involves three major tasks (illustrated in
Figure 1): First, the incorporation of cuts into the computa-
tional model of the deformable body, i.e., the update of the
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geometrical and topological representation of the simulation
domain as well as the numerical discretization of the gov-
erning equations. Second, the simulation of the deformable
body based on this computational model. Third, the detec-
tion and handling of collisions. Since the basic principles
underlying techniques for collision detection in virtual cut-
ting in principle are not different to those used in deformable
body simulation, this report summarizes only the particular
adaptations that have been proposed in the context of in-
teractive cutting simulation. For a broader overview of the
state-of-the-art in this field, including many technical and
implementation-specific details, let us refer to the survey by
Teschner et al. [TKH∗05]. The fracture process driven by
cutting tools, on the other hand, is still an open research
question, requiring to consider different material properties
to predict tissue responses, friction and sliding contacts, as
well as accurate force transmission. For a good introduction
to the specific problems that have to be addressed to resolve
collisions between insertion tools and deformable bodies let
us refer to the work by Chentanez et al. [CAR∗09].

This report presents a coherent summary of the state-of-
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Figure 1: Illustration of the three major tasks involved in
mesh-based virtual cutting simulations.

the-art in virtual cutting of deformable bodies, focusing on
the distinct geometrical and topological representations and
the numerical discretizations that have been proposed. The
report discusses the different approaches with respect to

• (physical) accuracy, referring to the ability to represent
arbitrarily-shaped cuts both in the geometrical and topo-
logical representation as well as in the numerical dis-
cretization, and to use physically-based simulation to pre-
dict the behavior of the cut object;

• robustness, relating to the numerical stability of the in-
volved algorithms in complicated cutting scenarios, such
as thin slicing or repeated cutting at the same location;
and

• computational efficiency, which is particularly important
in real-time applications such as surgery training and
planning, where the update of the computational model as
well as the deformation computation must be performed
within a very limited time budget.

The techniques we discuss in this report are also em-
ployed in fracture simulations. While cutting is the con-
trolled separation of a physical object as a result of an
acutely directed force, exerted through sharp-edged tools,
fracturing refers to the cracking or breaking of (hard) ob-
jects, under the action of stress. Fracture simulations build
on a fracture model, which determines when and where a
crack appears, as well as how the crack propagates through
the model. To actually realize the crack, the geometrical and
topological representation of the object as well as the nu-
merical discretization of the governing equations have to be
updated accordingly, and the dynamics simulation of the cut
body has to be performed. The relation between virtual cut-
ting and fracturing is illustrated in Figure 2. In this report
we focus on reviewing techniques for realizing an actual cut,
rather than how the position and shape of a cut is determined.
For a thorough introduction to fracture simulation let us refer
to [OH99, OBH02], and to a recent survey on fracture mod-
eling [MBP14] which discusses geometry- and image-based
approaches as well.

When comparing the individual approaches used for vir-
tual cutting, one of the most apparent classification criteria
is the geometrical and topological representation of the sim-
ulation domain. In general, this representation is a spatial

Figure 2: Simulation components in cutting and fracturing.
In this report we focus on the components that are common
to both simulation tasks.

discretization, as a spatial discretization of the simulation
domain—continuously updated according to the introduced
cuts—is required for the numerical discretization of the gov-
erning equations.

Most approaches are based on a volumetric mesh repre-
sentation of the object. Early works in the field (e.g., [OH99,
BMG99, CDA00, NFvdS00, MK00, OBH02]) mainly em-
ploy tetrahedral meshes, which offer a high degree of flex-
ibility considering the modeling of cuts by splitting ele-
ments or/and snapping element vertices onto the cutting
surfaces. Unfortunately, these procedures are prone to pro-
ducing ill-shaped elements, which are numerically unstable.
Recent works address this issue by using regular or semi-
regular meshes consisting of hexahedral elements [JBB∗10,
DGW11a,WDW11,SSSH11]. Some works also consider the
use of polyhedral meshes [WBG07,MKB∗08]. In addition to
mesh-based approaches, meshfree approaches based on par-
ticles [MKN∗04,PKA∗05,SOG06,PGCS09] were proposed.

In order to obtain a physically accurate simulation of
the deformable body, the large majority of mesh-based ap-
proaches employ the finite element method for the numeri-
cal discretization of the governing equations. The straight-
forward approach is to maintain a 1:1 correspondence be-
tween computational elements (finite elements) and geomet-
rical elements (cells) of the underlying mesh. The numerical
simulation then is mathematically identical to the simulation
of an object without cuts. In particular for interactive appli-
cations, however, it is highly desirable to decouple the spatial
discretization used for the geometrical and topological mod-
eling of cuts from the spatial discretization employed in the
numerical simulation, in order to thoroughly balance speed
and accuracy. Approaches that are based on this principle are
the extended finite element method [JK09,KMB∗09] and the
composite finite element method [JBB∗10, WDW11].

Using implicit time integration schemes, the numerical
discretization leads to a large, sparse linear system of equa-
tions in each simulation time step. This system can be solved
by using standard black box solvers, such as a conjugate
gradient solver. A significantly higher computational effi-
ciency can be achieved by means of problem-specific ge-
ometric multigrid solvers [GW06], when these solvers are
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particularly designed for the efficient treatment of the ma-
terial discontinuities arising in the context of virtual cut-
ting [DGW11a, WDW11].

A topic beyond the scope of this paper is the realistic tex-
turing of the induced cutting surfaces, such that the body’s
internal structures are displayed. To this end, 3D solid tex-
tures are employed, which can be obtained by texture syn-
thesis [PCOS10] or from slice-based real-world data.

The remainder of this report is organized as follows: The
different mesh representations and the respective adaptation
strategies used in virtual cutting are discussed in Section 2.
Finite element methods and meshfree approaches are dis-
cussed in Section 3 and in Section 4 respectively. Numer-
ical solvers are reviewed in Section 5. A summary of the
surveyed techniques and representative simulation scenarios
are presented in Section 6, followed by a discussion of tech-
niques for collision detection and haptic rendering in interac-
tive scenarios in Section 7. To demonstrate the performance
that can be achieved for virtual cutting on desktop PC hard-
ware, we have performed an application study. The results of
this study are presented in Section 8. The report is concluded
in Section 9 with a discussion of future research challenges.
A brief introduction of deformable body simulation using
the finite element method and meshfree methods is given in
the appendix.

2. Mesh-based Modeling of Cuts

Virtual cutting of a deformable body is modeled by manipu-
lating the geometrical and topological representation of the
simulation domain. In this section, after briefly discussing
the modeling of the cutting process, we focus on mesh-
based representations, including tetrahedral, hexahedral, and
polyhedral meshes, and we discuss the adaptation of these
meshes to cuts.

For rendering and collision handling, a surface repre-
sentation of the object is required. This representation can
be directly obtained from a tetrahedral or polyhedral mesh
by determining the element faces lying on the surface. For
hexahedral meshes, however, a separate surface representa-
tion is mandatory to compensate the jagged simulation do-
main boundary (staircases) resulting from the hexahedral
discretization. To this end, cube-based or dual contouring
algorithms that reconstruct a smooth surface from the hexa-
hedral mesh were proposed. Sifakis et al. [SDF07] demon-
strated how a lower-resolution tetrahedral mesh representing
the simulation domain can be combined with a set of given
high-resolution surface meshes (original object surfaces and
cutting surfaces) for rendering and collision handling.

2.1. Geometric Modeling of the Cutting Process

The cutting process is modeled in simulation practice by
detecting intersections between the volumetric mesh that

represents the deformable object, and a triangulated sur-
face mesh that represents a cutting surface. The cutting sur-
face is generated from the movement of the cutting tool
(scalpel). Specifically, element edges, or links between face-
adjacent elements are tested against the cutting surface
mesh [BMG99, NFvdS00, WDW13]. To generate sub-mesh
cutting effects such as in polyhedral modeling, element faces
are also tested against the cutting mesh [WBG07]. Based on
these intersections, elements are split and detached accord-
ingly, as described in the following sections. Since cutting
happens locally and advances gradually, a large region of the
deformable object can be pruned before elementary intersec-
tion tests are performed using bounding volume hierarchies,
and a breadth-first traversal of the volumetric mesh starting
from previous intersection points is also useful.

The cutting surface normally is the surface swept by the
scalpel’s cutting edge between two successive simulation
frames. Together with 3D spatial interfaces such as a haptic
device, this approach enables a natural interaction with the
virtual environment. The scalpel may have a complex geom-
etry for visual rendering, comprising a set of triangles. For
simplicity, however, the blade that actually cuts the object is
usually represented by a single line segment. An open prob-
lem is how time-continuous intersection testing between the
deformable body and the cutting tool can be realized. In
current approaches, the deformable body and the scalpel
are moved sequentially within each simulation frame, rather
than simultaneously. As a consequence, edges/links might be
missed by the cutting tool, especially if the object is moving
rapidly.

For non-interactive applications, the cutting surface can
also be predefined in the reference configuration [MBF04,
KMB∗09]. For example, the cutting surface can be con-
structed from a contour defined on the surface of the de-
formable object, which is similar to the guide contours
defined during preoperative surgery planning [WBWD12].
Prescribing a cutting surface in the reference configuration
allows for precisely applying a certain cutting shape, simpli-
fies the intersection tests, and avoids the possible problems
with temporally discrete intersection testing.

While the simulation of the progressive cutting process is
important for animation and interactive applications, in some
special cases such as surgery planning, the dynamic process
might be of less importance compared to the finally result-
ing shapes. In these cases the entire cut can be introduced in
a single step, which potentially simplifies remeshing opera-
tions.

2.2. Tetrahedral Meshes

After a brief review of some of the approaches for gener-
ating an initial tetrahedral mesh, we introduce and discuss
the following techniques for the incorporation of cuts into
tetrahedral meshes (see Figure 3 for a 2D illustration):
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Figure 3: Illustration of different methods for incorporating cuts into a tetrahedral mesh (a triangle mesh in 2D). The red cutting
path separates the object into two disconnected parts, which are illustratively displaced to make the discontinuity visible. The
surface of the object (bold black line) is given by the set of surface faces of the tetrahedral elements, except for the approach
that is based on element duplication, where a separate surface mesh is maintained.

• Element deletion [CDA00],
• Splitting along existing element faces [NFvdS00, MG04,

LT07],
• Element duplication [MBF04, SDF07],
• Snapping of vertices [NFvdS01, LJD07],
• Element refinement [BMG99, BG00, MK00, BS01,

BGTG04, GCMS00],
• Combined snapping of vertices and element refine-

ment [SHGS06].

One challenge is the accurate representation of arbitrarily-
shaped cuts, while avoiding the creation of ill-shaped ele-
ments [She02], which lead to numerical instabilities during
mesh adaptation and deformation computation. The method
of element deletion and the method of splitting along ex-
isting element faces maintain the well-shaped elements of
the original discretization, but they result in jagged surfaces.
By means of snapping of vertices or element refinement, or
a combination of both, cuts can be accurately represented.
However, since the elements are modified, for these methods
it is necessary to prevent ill-shaped elements. The method of
element duplication provides a good trade-off between accu-
racy and robustness by embedding an accurate surface into
the duplicated elements in their original shapes.

2.2.1. Tetrahedral Mesh Generation

An initial tetrahedral discretization of the simulation domain
can be generated from surface meshes [Si06], medical im-
age data [ZBS05,LZW∗14], or level sets [TMFB05]. Quality
tetrahedral mesh generation itself remains an active research
topic. It is well known that ill-shaped elements (e.g., needle

elements, or almost planar sliver elements) lead to numerical
instabilities [She02].

2.2.2. Cut Modeling without Creating New Elements

Perhaps the easiest way to incorporate cuts into the de-
formable body is to separate the material by removing
elements that are touched by a cutting tool. While this
simple method is widely adopted in real-time simulations
(e.g., [CDA00]), it puts severe limitations on the mechanical
accuracy and visual quality. First, the newly exposed surface
does not conform to the smooth swept surface of a cutting
tool, but to the initial discretization of the deformable body,
leading to a rather jagged surface. Second, the removal of
elements causes a loss of volume, and it leaves unrealis-
tic holes in the object. A remedy to the second problem is
to split the object along existing element faces [NFvdS00].
This works fine if the cutting surfaces are known a priori to
creating the initial discretization [LT07], i.e., the tetrahedral-
ization takes the pre-recorded cutting surface into account.
However, for arbitrary cuts, it still results in a jagged surface.
To make the newly created surface conforming to cuts, a
simple method is to snap the vertices onto the cutting surface
before splitting the object along element faces [NFvdS01].
This modification, however, may create ill-shaped elements,
which need further treatment afterwards.

2.2.3. Cut Modeling by Element Refinement

To accurately accommodate complex cuts with a reason-
able number of initial elements, it is thus necessary to lo-
cally refine tetrahedra. Bielser et al. presented a 1:17 sub-
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Figure 4: Left: A cut tetrahedron can have five topologically different configurations. The Roman numeral represents the number
of disconnected edges. The number in parentheses indicates the number of topologically equivalent configurations by rotation
and mirroring operations. Right: In the hybrid cutting approach, three additional topological configurations of a cut tetrahedron
are introduced. The small Roman numeral represents the number of existing vertices which are snapped and duplicated.

division method for tetrahedral decomposition, by generat-
ing a vertex on each edge, and a vertex on each triangle
face [BMG99]. The exact placement of these vertices de-
pends on the intersection between the cutting tool and the el-
ement. Initially, adjacent elements share their vertices. Cut-
ting is modeled by duplicating vertices appropriately. Fig-
ure 4 (left) illustrates the five topologically different config-
urations of a tetrahedron after introduction of a cut. Among
these five configurations, III a and IV correspond to com-
plete cuts through the tetrahedron, while the other three cor-
respond to partial cuts. For each of these configurations, the
information which vertices have to be duplicated in order to
generate the respective topological configuration after per-
forming the 1:17 subdivision, is pre-computed and stored in
a look-up table.

To reduce the number of elements compared to a full 1:17
subdivision, Bielser and Gross subdivided only those edges
and faces which are part of the cutting surface [BG00]. Mor
and Kanade presented a method for progressive cutting that
minimizes the number of newly created elements [MK00],
and Ganovelli et al. proposed a multi-resolution approach
to reduce the number of elements [GCMS00]. Bielser et
al. further proposed a state machine to track the topologi-
cal configuration of each tetrahedron during progressive cut-
ting [BGTG04].

Considering the decomposition of tetrahedron, if the in-
tersection between an edge and the cutting surface is very
close to one of the edge’s vertices, ill-shaped elements will
occur. Steinemann et al. proposed a combination of snap-
ping of vertices and element refinement to solve this prob-
lem [SHGS06]. The idea is illustrated in Figure 5 for the 2D
case. If a vertex of an intersected edge lies close to the cut-
ting surface (the distance is smaller than a given threshold),
the algorithm moves this vertex onto the cutting surface, and
separates the material by duplicating the vertex. If the cut-
ting surface intersects an edge close to its midpoint, the edge

is split. The method is implemented by extending the set of
five topological configurations of a cut tetrahedron, shown
in Figure 4 (left), by three additional topological configura-
tions, illustrated in Figure 4 (right). The additional configu-
rations correspond to a complete cut that passes through one,
two, or three vertices.

To model a curved cut within a tetrahedral element, given
by a sequence of cutting surface triangles, the individual tri-
angles in principle can be successively incorporated into the
tetrahedral mesh, leading to a sequence of repeated tetrahe-
dral splits. Since this approach leads to a very large number
of tetrahedra along the cut, in practice only a single split
of the initial tetrahedron is performed. A curved cut thus is
approximated by a only a few tetrahedron faces. The result-
ing sub-tetrahedra in general are only split if they are inter-
sected by another cut. Also for progressive cutting, the ini-
tial tetrahedron is split only once, i.e., when a partial cut is
further progressing through a tetrahedron, the current tetra-
hedral split is undone and replaced by a new split.

Figure 5: A hybrid cutting approach based on both snap-
ping of vertices and element refinement. If the intersection
between an edge and the cutting surface is close to one of
the edge’s vertices (determined by a threshold d), the ver-
tex is moved onto the cutting surface, in order to prevent the
creation of ill-shaped elements. Otherwise the edge is split
at the exact intersection point.
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2.2.4. Cut Modeling by Element Duplication

Molino et al. proposed the virtual node algorithm to cir-
cumvent subsequent numerical problems resulting from ill-
shaped elements [MBF04]. The basic idea is to create one or
more replicas of the elements that are cut, and to embed each
distinct material connectivity component of an element into
a unique replica. The replicas comprise both original ver-
tices inside the material (referred to as real nodes) and newly
created vertices outside the material (referred to as virtual
nodes). Embedding means that the deformation computation
is performed on the well-shaped replicas of the original ele-
ment, and then the displacements of the element’s fragments
are determined by means of interpolation.

In the initial version of the algorithm, each replica is re-
quired to have at least one real node. This was extended by
Sifakis et al. to allow for replicas with purely virtual nodes,
and thus to support an arbitrary number of fragments within
a single tetrahedron [SDF07]. Given a set of triangle sur-
face meshes (original object surfaces and cutting surfaces),
enclosed by a tetrahedral mesh that covers the simulation do-
main, the algorithm first generates a set of non-intersecting
polygons from the triangle soup consisting of surface mesh
triangles and tetrahedron faces. From these polygons, a poly-
hedral discretization is determined by examining the con-
nectivity among the polygons. Note that the polyhedra and
the tetrahedra per construction do not intersect. Then, for
each tetrahedron, the material connectivity components are
determined from the polyhedral discretization. For each con-
nectivity component, a duplicate of the tetrahedron is cre-
ated. In this way, the algorithm enables to combine a lower-
resolution tetrahedral mesh for the representation of the sim-
ulation domain with high-resolution surface meshes for ren-
dering and collision handling. Note that by means of the du-
plication of elements, the volumetric representation and the
surface representation are topologically consistent.

Wang et al. redeveloped the virtual node algo-
rithm [WJST14]. Their version allows for cuts passing
through mesh vertices or lying on mesh edges and faces
(without the need of ambiguous perturbation of the cut-
ting surfaces as in the original version), enables multiple
cuts per tetrahedron face (at a lower algorithmic complexity
than [SDF07]), and includes a mesh intersection routine that
is provably robust in the context of floating point rounding
errors.

2.3. Hexahedral Meshes

A regular or semi-regular hexahedral discretization, gen-
erated directly from medical image data [ZBS05] or
from polygonal surface meshes by voxelization tech-
niques [ED08, DGBW08], provides an effective means to
represent cuts without having to worry about ill-shaped
elements [JBB∗10, SSSH11]. We discuss the approach of
using a linked volume representation, where the con-

Figure 6: 2D illustration of the modeling of cuts in a linked
volume representation. The object is discretized by means of
an adaptive octree grid (shaded cells). The cells of this grid
are connected by links (green, solid). Cutting is modeled by
disconnecting links (red, dashed). A surface mesh (black line
and dots) is reconstructed from the dual grid of links.

nectivity is modeled by links between face-adjacent ele-
ments [FG99, DGW11a], and review surface reconstruction
techniques to build a smooth surface mesh from the hexahe-
dral grid [WDW11].

2.3.1. Volume Representation

To model cuts in the deformable body, Frisken-Gibson pro-
posed a linked volume representation [FG99]. The basic idea
of the linked volume representation is to decompose the ob-
ject into a set of hexahedral elements, using a uniform hexa-
hedral grid. Face-adjacent elements are connected via links,
with six links emanating from each element. Cuts are mod-
eled by marking links as disconnected when they are inter-
sected by the virtual cutting blade. Cuts are thus represented
at the resolution of the hexahedral grid.

Since the resolution of a uniform grid is in practice lim-
ited by simulation time and memory requirements, an adap-
tive octree grid for virtual cutting was proposed by Dick et
al. [DGW11a] (see Figure 6), which adaptively refines along
cuts, down to a certain finest level. Links are still considered
on the uniform grid corresponding to this finest level, but
are physically stored only for the elements at the finest level.
The adaptive octree grid is constructed by starting from a
coarse uniform grid. Whenever a link on the finest level is
intersected by the surface of the deformable object, the in-
cident elements (possibly only one element, when both end-
points of the link are lying within the same element) are re-
fined using a regular 1:8 split. At the finest level, links are
marked as disconnected when they are intersected by the
object’s surface. Elements that are lying outside of the ob-
ject are removed from the representation. To avoid jumps in
the discretization, additional splits are performed to ensure
that the level difference between elements sharing a vertex,
an edge, or a face is at most one (restricted octree). Cuts
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Figure 7: The Stanford bunny model is discretized into a
linked octree grid (left), which is refined along the surface
and the cuts (right).

are modeled analogously to the modeling of the object sur-
face, i.e., elements are adaptively refined along a cut down
to the finest level, where links are marked as disconnected
(see Figure 7 for an example). Material properties such as
Young’s modulus and density are assigned on a per-element
basis. To model inhomogeneous materials, the octree mesh
can be refined further.

2.3.2. Surface Representation

To render the surface of the deformable object—including
the additional surface parts that are generated by cutting—a
surface mesh is reconstructed from the volume representa-
tion. Wu et al. [WDW11] applied the dual contouring ap-
proach [JLSW02] for constructing this surface. Compared
to the splitting cubes algorithm [PGCS09], which was used
in [DGW11a], dual contouring improves the quality of the
generated mesh and reduces the total number of triangles.
Dual contouring operates on the (imaginary) grid that is
formed by the links between the elements at the finest level.
For each link that is cut by the blade, the distances between
the intersection point and the link’s endpoints as well as the
normal of the blade at the intersection point are stored. This
information is used to position a surface vertex within each
cell that is incident to at least one disconnected link. Since
for a cut two surfaces have to be created—one for each mate-
rial side—this vertex is duplicated, so that for each material
component in the cell one vertex exists. The material compo-
nents in a cell are determined by means of a look-up table,
which is indexed by the pattern of connected and discon-
nected links incident to a cell. After generating the vertices,
the surface is spanned by creating two surface patches (2×2
triangles) for each link that is cut. The vertices are finally
bound to the nearest element of the respective material part.
This binding allows for carrying over the deformation com-
puted at the vertices of the hexahedral simulation mesh to
the surface vertices.

In the discussed approaches, the resulting surface is re-
constructed from the underlying hexahedral grid. This de-
sign thus avoids the explicit cutting of the surface mesh. It
has also been adopted for fracturing simulation [HJST13]. A
different strategy is to explicitly cut the surface mesh, sepa-
rated from the hexahedral simulation grid. This strategy was

Figure 8: Illustration of cuts in polyhedral elements. Left:
A tetrahedron is cut into two parts, resulting in a small tetra-
hedron and a triangular prism. Right: The triangular prism
is partially cut, resulting in two polyhedral elements that are
partially connected. Contrary to a tetrahedral discretization,
no further subdivision is required.

followed by Seiler et al. for the simulation of punching op-
erations [SSSH11], which are commonly seen in endoscopic
surgery.

2.4. Polyhedral Meshes

When cuts are modeled by element refinement, the resulting
elements necessarily must be tetrahedra or hexahedra, when
a tetrahedral or hexahedral discretization is used. A polyhe-
dral discretization removes this constraint by allowing the
creation of general polyhedra. This potentially enables the
modeling of cuts by creating a smaller number of new ele-
ments [WBG07, MKB∗08].

Without loss of generality, polyhedral modeling of cuts
can be realized by starting with a purely tetrahedral dis-
cretization of the object. To model a complete cut, upon
which an element is split into disconnected parts, two new
convex elements are created. These resulting elements are
composed of vertices of the initial element and the intersec-
tions between its edges and the cutting polygon. As illus-
trated in Figure 8 (left), a tetrahedron is split into a small
tetrahedron and a triangular prism. Note that no re-meshing
is needed to decompose the triangular prism into smaller
tetrahedra. Figure 8 (right) shows the modeling of a partial
cut. The intersections between the element’s edges and the
cutting polygon, and between the element’s faces and the
cutting polygon’s edges are employed as new vertices.

While polyhedral modeling of cuts potentially leads to
simplified operations, similar to tetrahedral meshes, there are
practical issues with respect to ill-shaped elements. A funda-
mental problem is that quality criteria of general polyhedral
elements are unclear. Wicke et al. found that in particular
sliver polyhedra, which are almost planar, lead to numerical
problems during simulation, and applied vertex merging and
snapping to remove these slivers [WBG07]. Furthermore, to
avoid possible numerical problems, it is required to enforce
that the elements are convex. These issues and constraints
make quality and efficient polyhedralization non-trivial.
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2.5. Discussion on Discretizations

Avoiding ill-shaped elements is still a major challenge when
using a tetrahedral discretization, especially under the con-
straint of the limited time budget in real-time applications.
While a polyhedral discretization offers more flexibility with
respect to the shape of individual elements, still special care
is required to avoid ill-shaped polyhedra, and also to ensure
the convexity of the elements. The virtual node algorithm is
superior in this aspect, since it embeds possibly ill-shaped
fragments into duplicates of original elements, whose qual-
ity can be ensured during preprocessing. Another solution to
handle ill-shaped elements is to treat them separately with
an alternative numerical strategy, for example with a ge-
ometric deformation model. This was studied by Fierz et
al. [FSHH12].

Using a semi-regular hexahedral discretization is an effec-
tive means to ensure that the elements are well-shaped dur-
ing dynamic mesh refinement. However, a separate surface
representation is required to compensate the jagged nature
of the hexahedral grid.

3. Finite Element Simulation for Virtual Cutting

In mesh-based cutting approaches, the finite element method
is typically used for the numerical discretization of the gov-
erning equations of elasticity. The standard approach is to
directly employ the spatial discretization that is induced by
the mesh, i.e., to create one computational element (finite el-
ement) for each geometrical element (cell). The deformable
body simulation then is identical to the case without cuts.
General simulation of deformable bodies in computer graph-
ics is for example surveyed in [NMK∗06]. For an intro-
duction of finite elements for elasticity let us refer to Ap-
pendix A.2.

In this section, we discuss three finite element methods
that are specialized for simulating cuts in deformable bodies.
In particular, we discuss the extended finite element method,
the composite finite element method, as well as the polyhe-
dral finite element method. For the first two methods, sepa-
rate spatial discretizations are employed for the representa-
tion of the simulation domain and for the numerical simu-
lation. This allows for the modeling of complicated-shaped
cuts (and also a complicated-shaped original surface of the
object), while requiring only a rather small number of com-
putational elements. In this way, these methods enable to
carefully balance speed and accuracy, which is particularly
important for interactive applications.

For each method, we present its idea and its main compo-
nents (e.g., the design of shape functions and the construc-
tion of element stiffness matrices). In an additional section,
we also briefly review the numerical methods for solving the
system of equations resulting from finite element discretiza-
tion and implicit time integration, since the numerical solver

is a crucial component considering the overall performance
of a cutting application.

3.1. The Extended Finite Element Method

The basic idea of the extended finite element method
(XFEM) [BB99] is to model material discontinuities intro-
duced by cuts by adapting the basis functions of the finite
dimensional solution spaces [BM97, SCB01]. XFEM was
originally invented to accurately simulate material interfaces
and crack propagation [MDB99, SMMB00]. The idea was
recently utilized for cutting and fracturing deformable ob-
jects in graphics applications [LT07, JK09, KMB∗09].

In the standard FEM, the displacement within an element
is interpolated from the displacements at the element’s nodes
by using continuous shape functions, which are apparently
not sufficient to model the discontinuities introduced by cuts.
The idea of XFEM is to introduce discontinuous enrich-
ment functions, together with additional degrees of freedom
(DOFs) assigned to the original nodes. The displacement
field u(x) is computed as

u(x) = Φe(x) ue +Ψe(x)Φe(x) ae︸           ︷︷           ︸
enrichment

, (1)

where Φe(x) is the standard shape matrix, ue is the vector of
original DOFs, Ψ(x)e is the element’s shape enrichment ma-
trix, which is composed of discontinuous enrichment func-
tions ψe

i (x), and ae represents the newly assigned DOFs.

To make the shape functions fulfill the Kronecker delta
property, a good choice for the enrichment functions is the
shifted Heaviside function, i.e.,

ψe
i (x) =

H(x)−H(xi)
2

, (2)

where xi is the position of the i-th node, and H(x) is the gen-
eralized Heaviside function (also known as the sign func-
tion)

H(x) =

{
+1 if x is on the cut’s left side;
−1 if x is on the cut’s right side. (3)

As illustrated in Figure 9 (for simplicity for a planar ele-
ment), using the shifted Heaviside function ensures the dis-
continuity across the cut. Substituting the enrichment func-
tions Eq. 2 into Eq. 1, in this example the displacement field
becomes u(x) = Φe(x) (u1, u2 + a2, u3)T on the left side of
the cut, and u(x) = Φe(x) (u1 −a1, u2, u3 −a3)T on the right
side. Employing the shifted Heaviside function as enrich-
ment functions makes it easy to treat boundary conditions:
Since they vanish at the nodes, i.e., ψe

i (xi) = 0, the displace-
ment at the position of the i-th node is independent of the
additional DOFs ae. It should be noted that a different se-
lection of the enrichment functions influences the physical
meaning of the original and the added DOFs, but leads to
the same displacement field.

With the enriched shape functions defined, the enriched
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Figure 9: A discontinuous displacement field computed
with the extended finite element method. The green tri-
angle domain is divided by a red cut line. The displace-
ments ui and ai correspond to the original and added
DOFs respectively. Using the shifted Heaviside function
as enrichment functions, the displacement field is u(x) =

Φe(x) (u1, u2 + a2, u3)T on the left side of the cut, and u(x) =

Φe(x) (u1 −a1, u2, u3 −a3)T on the right side.

element stiffness matrix is computed as

xKe =

∫
Ωe

(xBe)TC(xBe)dx, (4)

where C represents the material law, and the enriched ele-
ment strain matrix is composed according to

xBe =
(
Be

1, . . . , Be
nv
, ψe

1Be
1, . . . , ψ

e
nv

Be
nv

)
. (5)

The enriched element stiffness matrix has the form

xKe =

(
Ke,uu Ke,ua

Ke,au Ke,aa

)
, (6)

where the superscripts u and a correspond to the original and
the added DOFs, respectively. Details that facilitate imple-
mentation, as well as enriched element stiffness matrices for
the corotational and non-linear strain formulations were de-
rived by Jeřábková et al. [JK09].

While only a single cut is considered above, multiple
cuts, in principle, can be supported by further adding more
enrichment functions and simulation DOFs. Kaufmann et
al. proposed enrichment textures for detailed cutting of
shells [KMB∗09]. They proposed a harmonic enrichment
approach, which uses only one unified kind of enrichment
functions to handle multiple, partial, progressive, and com-
plete cuts. While this approach is in general applicable to 3D
solids, such a generalization has not been reported yet.

3.2. The Composite Finite Element Method

The idea of the composite finite element method
(CFEM) [HS97, SW06] is to approximate a high-resolution
finite element discretization of a partial differential equation
by means of a smaller set of coarser elements. Preusser
et al. used the composite finite element method to re-
solve complicated simulation domains with only a few

degrees of freedom, and also to improve the convergence
of geometric multigrid methods by an effective represen-
tation of complicated object boundaries at ever coarser
scales [PRS07, LPR∗09]. In computer graphics, Nesme et
al. employed CFEM as a special kind of homogenization for
resolving complicated topologies and material properties in
deformable body simulation [NKJF09].

Recently composite finite elements were leveraged in the
context of virtual cutting to reduce the number of simula-
tion DOFs [JBB∗10, WDW11]. The adoption of CFEM for
cutting simulation is motivated by the following facts. First,
using hexahedral discretizations (see Section 2.3), an accu-
rate representation of complex cuts typically requires a high-
resolution octree grid. Creating a hexahedral simulation ele-
ment for each octree cell would lead to a very high number
of DOFs, exceeding the number of DOFs that can be simu-
lated in real-time. Second, due to its simplicity, the regular or
semi-regular hexahedral grid enables an efficient construc-
tion of composite finite elements.

A composite finite element is obtained by combining a set
of small standard finite elements into a single larger element.
In particular, the shape functions of the composite finite ele-
ment are assembled from the shape functions of the individ-
ual elements. In the following, we discuss the geometrical
and topological composition, and the numerical composition
of the stiffness matrices.

Geometrical and topological composition Building upon
the hexahedral grid, composite elements are constructed by
merging the elements in a block of 23 cells of the un-
derlying lattice into one composite element. This straight-
forward approach, however, may merge topologically dis-
connected elements into one composite element, neglect-
ing the fact of the material’s discontinuity. To accurately
represent the topology and thus to enable a physically cor-
rect simulation, an individual composite element is created
for each mechanically disconnected part, as demonstrated
in [NKJF09, DGW11a, WDW11]. As a consequence, multi-
ple composite finite elements may exist at the same location.
An illustration of this process, which can be iteratively re-
peated to create ever coarser composite elements, is given in
Figure 10.

Numerical composition The stiffness matrices for the com-
posite elements are assembled from those of the underly-
ing standard elements. Using composite finite elements, the
DOFs are located at the vertices of these composite ele-
ments. The displacements at the vertices of the underlying
hexahedral finite elements are determined by trilinear inter-
polation from the vertices of the composite finite elements.
This is described by the equation u = Iũ, where ũ and u de-
note the linearizations of the displacements at the vertices of
the composite finite elements and the underlying hexahedral
finite elements, respectively, and the interpolation matrix I
expresses the trilinear interpolation from the composite ele-
ment vertices.
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Figure 10: Hierarchical construction of the composite finite element model. Left: 2D illustration of the adaptive linked volume
representation, consisting of a set of octree cells (gray), which are connected via links (green). These links are disconnected
(dashed, orange) at the object’s original boundary and along the newly generated surfaces due to cutting (bold black line).
Middle left to right: Iterative coarsening of the finite element model. The underlying graph representation is indicated by red
vertices and green edges. In each block of 23 cells of the underlying lattice, the connected components (orange) are determined,
and the elements of each connected component are replaced by a separate composite finite element. Duplicated elements are
shaded in dark gray.

It can be derived that the stiffness matrix K̃ for the com-
posite finite element discretization has the form

K̃ = ITKI, (7)

where K is the stiffness matrix for the underlying hexahedral
finite element discretization. K̃ is assembled from the com-
posite element stiffness matrices K̃c, which are computed as

K̃c
mn =

∑
e in c

8∑
i=1

8∑
j=1

wc→e
m→iw

c→e
n→ jK

e
i j, m,n = 1, . . .8. (8)

Here, the first sum iterates over the hexahedral elements e
that are merged into the composite element c. Note that the
element matrices are interpreted as 8 × 8 matrices with each
entry being itself a 3 × 3 matrix. Thus, K̃c

mn and Ke
i j denote

3 × 3 blocks of scalar entries.

The trilinear interpolation weights wc→e
m→i from the vertices

m = 1, . . .8 of the composite element c to the vertices i =

1, . . . ,8 of the hexahedral element e are defined as

wc→e
m→i = (1−

|xc
m − xe

j |

sc )(1−
|yc

m − ye
j |

sc )(1−
|zc

m − ze
j |

sc ), (9)

where (xc
m,y

c
m,z

c
m) and (xe

i ,y
e
i ,z

e
i ) are the coordinates of the

vertices, and sc denotes the edge length of the composite
element.

3.3. The Polyhedral Finite Element Method

To avoid the re-meshing process in standard finite elements,
Wicke et al. proposed to directly work on more general
convex polyhedral elements [WBG07]. Martin et al. ex-
tended this method to support arbitrary convex and con-
cave polyhedral elements with planar (not necessarily trian-
gulated) faces [MKB∗08]. Kaufmann et al. further applied
discrete discontinuous Galerkin FEM to arbitrary polyhe-
dra [KMBG08]. These approaches are collectively named
here as polyhedral finite element method (PFEM).

Shape functions for polyhedra A key component in PFEM

is valid shape functions defined on the polyhedral domain.
They should fulfill the properties of positivity and reproduc-
tion of linear polynomials, as required for the convergence
of the finite element method [WBG07].

Wicke et al. employed the mean value interpolation func-
tion, which is defined as a normalized weight function for
each vertex xi of a convex polyhedron with k vertices ac-
cording to

φi(x) =
wi(x)∑k

l=1 wl(x)
. (10)

Enumerating xi’s edge-adjacent vertices by x j, the weight wi
is defined as a weighted sum of ratios of signed tetrahedra
volumes by

wi(x) =
∑

j

(
c j, j+1

Vi, j, j+1
+

ci, jV j−1, j+1, j

Vi, j−1, jVi, j, j+1

)
, (11)

where Va,b,c represents the volume of the tetrahedron
spanned by xa, xb, xc and x, and ca,b is computed as

ca,b(x) =
‖(xa − x)× (xb − x)‖

6
arccos

(
(xa − x)T(xb − x)
‖xa − x‖‖xb − x‖

)
.

(12)

Martin el al. used harmonic shape functions as a general-
ization of linear tetrahedral shape functions to general poly-
hedral elements. A shape function is called harmonic if its
Laplacian vanishes within the element. With its value fully
determined at the nodes (constrained by the Kronecker delta
property), the harmonic shape function is uniquely deter-
mined. Since closed form expressions for harmonic shape
functions do not exist for general polyhedra, they numeri-
cally computed the solution of the Laplacian equation using
the method of fundamental solutions.

Computation of element matrices In contrast to finite ele-
ment methods based on tetrahedral and hexahedral elements,
an analytical evaluation of the element stiffness matrices for
polyhedral elements is non-trivial. To efficiently integrate
(Be)TCBe over a polyhedral domain, Wicke et al. approx-
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imated the integrals using a small set of sample points p
heuristically placed throughout the element, in particular,
one integration sample pi per vertex of the element, and one
sample p f per triangle of the element faces. In their imple-
mentation, the per-vertex samples are placed between the
element centroid c and the vertex xi, at pi = 0.8xi + 0.2c,
while the per-triangle samples are located between the ele-
ment centroid c and the face centroid c f , at p f = 0.9c f +0.1c.
Their simulation results show that the exact location of the
samples has little influence, and that the difference compared
to employing around 10,000 samples per element is subtle.

Integrating over this set of sample points, the element
stiffness matrix Ke has the form

Ke =
∑

i

µe
i

2
(Be(pi))TCBe(pi) +

∑
f

κe
f

2
(Be(p f ))TCBe(p f ).

(13)
Here, µe

i and κe
f represent the volume fractions associated

with the per-vertex integration sample pi and with the per-
triangle sample p f , respectively. Specifically, enumerating
xi’s edge-adjacent vertices by x j, the volume fraction µe

i is
defined as

µe
i =

∑
j V(xi, x j, x j+1,c)

3Ve . (14)

For a triangle face with vertices x j1 , x j2 , and x j3 , the volume
fraction κe

f is defined as

κe
f =

V(x j1 , x j2 , x j3 ,c)
Ve . (15)

3.4. Discussion on Finite Element Methods

Both the extended finite element method and the composite
finite element method are based on using distinct spatial dis-
cretizations for the representation of the simulation domain
and the numerical discretization. In particular, the spatial
discretization that is employed for the numerical discretiza-
tion does not need to be aligned at the simulation domain
boundary. Compared to the standard finite element meth-
ods, this enables to reduce the number of computational ele-
ments/DOFs along the boundary, and thus to balance speed
and accuracy. Both approaches are based on using duplicated
DOFs at the same location in order to correctly model the
topology of the simulation domain. Whereas the extended
finite element method directly duplicates the DOFs at the
vertices of the original element, the composite finite element
method is based on duplicating elements, which implicitly
leads to a duplication of DOFs.

It is worth noting that the virtual node algorithm [MBF04]
described in Section 2.2.4 is related to these approaches,
in that it is also based on the duplication of elements and
thus DOFs in order to correctly represent the topology of the
simulation domain. However, since in the virtual node al-
gorithm the duplicated elements are assigned the (standard)
element matrices of the original elements before cutting, the

distribution of the material to the distinct sides of a cut is
not modeled accurately. This is in contrast to the extended
and the composite finite element method, where the mate-
rial boundaries (including those resulting from cutting) are
accurately represented by using specialized element matri-
ces, i.e., the construction of these matrices takes the exact
material boundaries into account.

4. Meshfree Methods

In contrast to finite element methods, meshfree methods
(also known as meshless methods) do not require a simu-
lation grid. Instead, the material is represented by a set of
moving simulation nodes, which interact with each other ac-
cording to the governing equations of elasticity. From com-
putational mechanics, reviews of meshfree methods for cut-
ting and fracturing can be found in [NRBD08, RBZ10]. The
advantage of meshfree methods is that they do not need an
explicit encoding of the material topology and can be used
even in scenarios where the connectivity of the nodes is diffi-
cult to maintain without introducing errors [NTV92]. On the
downside, meshfree methods need to compute node-to-node
adjacency in every simulation step, making it necessary to
maintain and update an additional search data structure.

In computer graphics, Desbrun and Cani are among the
first to employ the concepts underlying meshfree methods
for deformable body simulation. They animated soft sub-
stances that can split and merge by combining particle sys-
tems with inter-particle forces [DG95]. Müller et al. pro-
posed point-based animation for a wide spectrum of volu-
metric objects [MKN∗04], the basics of which are summa-
rized in Appendix A.3. Meshfree methods have also been
used in offline fracturing [PKA∗05] and interactive cut-
ting [SOG06, PGCS09].

In meshfree methods, the object is sampled at a set of sim-
ulation nodes xi. The deformation field is approximated by
u(x) =

∑
i φi(x)ui, where ui are the displacement vectors at

the simulation nodes and φi are shape functions. The shape
functions proposed in the computer graphics literature are
usually constructed using the moving least squares (MLS)
approximation [LS81]. Alternative designs of shape func-
tions for meshfree methods can be found in engineering text-
books (e.g., [FM03]). The shape functions are weighted by
a polynomial kernel w(x, xi,ri), which rapidly decays with
increasing distance between the simulation node xi and the
point x where the function is to be evaluated.

Modeling discontinuity Meshfree methods model the ma-
terial discontinuities caused by cutting (as well as initial
surface concavities) by augmenting the shape functions. A
straightforward way is by introducing the visibility crite-
rion [BLG94], i.e., if a point x is invisible from the sim-
ulation node xi due to the newly created surface, the shape
function φi(x) is assigned a value of zero. A drawback of this
solution is that it introduces an artificial discontinuity (see
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Figure 11 (a), the two sides of the ray starting from the dis-
continuity tip p are classified as visible and invisible respec-
tively), which affects negatively numerical convergence and
stability. To cope with this, Pietroni et al. extended the vis-
ibility criterion by introducing the concept of visibility disk
and augmented the shape function by the ratio of the visi-
ble region within the disk [PGCS09]. While this approach
alleviates the discontinuity caused by the binary-valued visi-
bility criterion, a rigorous definition of the visibility disk has
not been proposed so far.

The discontinuity can also be modeled by defining differ-
ent distance measures for quantification of the distance be-
tween x and xi, which is then considered in the weights of the
shape functions. The transparency method [OFTB96] adds
to the Euclidean distance between x and xi a factor that de-
pends on the distance from the discontinuous tip to the inter-
section of the line segment, pa in Figure 11 (b). This distance
measure was used in offline simulations [PKA∗05,GLB∗06].

The diffraction method [OFTB96], which considers the
diffraction of rays around the discontinuity tip, weights the
Euclidean distance between x and xi by their distances to
the discontinuity tip, pxi and px in Figure 11 (c). Note that
the diffraction and transparency methods were designed for
simple 2D domains where the discontinuity tip is well de-
fined. For efficient evaluation of diffraction distances in 3D,
Steinemann et al. proposed the use of a visibility graph for
estimating the distance along fully visible paths between
two points [SOG06]. The distance is chosen as the short-
est path in a pre-computed visibility graph, see Figure 11
(d), xi → xa → xb → x. Upon cutting, the intersected edges
of the visibility graph are removed from the graph, and the
shortest paths in the graph are updated accordingly.

Boundary surface Meshfree methods do not naturally pro-
vide a representation of the boundary. To create new sur-
faces after cutting, Steinemann et al. proposed to explicitly
triangulate the swept surface of a cutting tool [SOG06]. The
swept surface is trimmed with respect to the original sur-
face of the object. In the context of fracturing, Pauly et al.
modeled explicitly advancing crack fronts by continuously
adding surface samples during crack propagation [PKA∗05].
Instead of creating new surfaces explicitly, Pietroni et al.
maintained a uniform hexahedral grid that is embedded into
the simulation domain, and reconstructed from this grid
a mesh corresponding to an implicit surface in the vol-
ume [PGCS09].

While meshfree methods were intentionally proposed
to efficiently handle large deformations and topological
changes, more recent works has demonstrated performance
gains by augmenting meshfree methods with explicitly
stored connectivity information. For example, a graph con-
necting simulation nodes can be employed to evaluate mate-
rial distance [SOG06] or encode visibility [JL12]. In these
two approaches, cutting is modeled by removing corre-
sponding edges in the graph. Another example is the em-

Figure 11: Discontinuity modeling in meshfree methods.
The object (gray region) is sampled at a set of simulation
nodes (blue dots). (a) The visibility criterion assigns a zero
value to the shape function since xix intersects the cut (the
red curve). (b) The transparency method enhances the Eu-
clidean distance xix with the distance from the discontinuity
tip to the intersection, pa. (c) The diffraction method consid-
ers the distances from the tip to both nodes, pxi and px. (d)
The diffraction distance is approximated by the shortest path
in a visibility graph, xixa, xaxb, and xbx.

bedding of a uniform hexahedral grid into a meshfree sim-
ulation in order to construct the newly exposed cutting sur-
faces [PGCS09].

5. Numerical Solvers

To solve the sparse linear system of equations Ax = b re-
sulting from finite element discretization and implicit time
integration, an efficient numerical solver is required. Here it
is worth noting that in the particular application of virtual
cutting, the initialization time of the solver plays a signifi-
cant role. Since the system matrices have to be re-assembled
in every simulation step due to the use of the corotational
strain formulation and the handling of topological changes,
the initialization of the solver has to be performed in every
simulation step, too.

5.1. Direct Solvers

Direct methods determine an exact solution of the linear sys-
tem of equations by a finite sequence of operations. Target-
ing static finite element simulations using linear elasticity
without corotational strain (i.e., the matrix A changes only
if cuts are applied), Zhong et al. [ZWP05] proposed to solve
the equation system by pre-computing the inverse A−1. In
their approach, a cut is modeled by deleting elements, and
by adapting the rows and columns of A corresponding to
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their incident vertices. The manipulation of A is expressed
in the form A + UVT, so that the inverse can be updated via
the Sherman-Morrison-Woodbury formula [Hag89]

(A + UVT)−1 = A−1 −A−1U(I + VTA−1U)−1VTA−1. (16)

If the number of affected elements and the number of non-
zero entries in the right-hand side vector b are limited by
a given constant, the update of A−1 and the evaluation of
x = A−1b have linear run-time in the number of vertices. Lee
et al. [LPO10] made use of condensation [BNC96,WH05] to
further accelerate the inversion process. By considering only
the surface vertices of the volumetric object in the computa-
tion of the inverse, significantly improved computation times
can be achieved.

In a similar manner, Lindblad and Turkiyyah updated the
inverse of the stiffness matrix in the extended finite element
method [LT07]. Using XFEM, the dimension of A increases
due to the newly assigned DOFs (see Eq. 6), and A changes

to
[
A Aua

Aau Aaa

]
, where the superscripts u and a correspond to

the original and the added DOFs, respectively. The inverse
of the new matrix can be computed from the inverse of the
original matrix using[

A Aua

Aau Aaa

]−1

=

[
A−1 + A−1AuaD−1AauA−1 −A−1AuaD−1

−D−1AauA−1 D−1

]
,

(17)
where D = Aaa −AauA−1Aua.

Turkiyyah et al. proposed to use progressive updates
of the Cholesky factorization to simulate cutting of a 2D
mesh [TKAN09], and Courtecuisse et al. updated the in-
verse of the compliance matrix after cutting to model the
contact [CJA∗10]. Recently, sparse direct solvers were ap-
plied to corotational elastodynamics with consistent topol-
ogy [HLSO12].

5.2. Iterative Solvers

Direct solvers using matrix inversion and factorization do
not scale well in the number of DOFs because of their exten-
sive memory and computation requirements. Furthermore,
such solvers cannot trade accuracy for speed, which is re-
quired in interactive applications to guarantee prescribed re-
sponse rates.

Iterative solvers generate a sequence of increasingly more
accurate approximations to the exact solution of a system of
equations, and thus are an effective means to balance speed
and accuracy by choosing a fixed number of iterations or by
specifying a stopping criterion in terms of a threshold for
the error reduction. When rating the efficiency of an iterative
solver, the major criterion is the achieved convergence rate,
i.e., error reduction per computing time.

Nienhuys and van der Stappen [NFvdS00, NFvdS01]
used a conjugate gradient (CG) solver [She94], which re-

quires large number of iterations to obtain stable and visu-
ally realistic deformations [CJA∗10, CAR∗09]. On the other
hand, since CG solvers involve matrix-vector and vector-
vector products they can be parallelized efficiently using
OpenMP [CAR∗09] and CUDA [CJA∗10].

Dick et al. proposed a geometric multigrid solver for cut-
ting simulation, based on a hexahedral discretization of the
simulation domain [DGW11a]. The main idea of multigrid
is to employ a hierarchy of successively coarser grids, such
that successively lower frequency error components can be
effectively relaxed on successively coarser grids. Multigrid
is optimal in the sense that it exhibits asymptotic linear run-
time in the number of unknowns. A detailed comparison of
different solvers in the context of virtual cutting has revealed
significantly improved convergence rates of multigrid meth-
ods compared to a Cholesky solver and a CG solver with Ja-
cobi pre-conditioner. In particular it was demonstrated that
the convergence rate of multigrid methods does not depend
on the smoothness of the object boundary, which was com-
monly referred to as a main weakness of multigrid methods.

In multigrid methods, In addition to the relaxation scheme
and the coarse grid hierarchy, transfer operators are required
to transfer quantities between the grids. Consider a two-level
geometric hierarchy where the fine and coarse level are de-
noted by superscripts h and 2h, respectively. The linear sys-
tem on the fine grid has the form Ahxh = bh. On the coarse
grid, the system matrix is approximated by A2h = R2h

h AhIh
2h,

where Ih
2h is the interpolation operator and R2h

h = (Ih
2h)T the

restriction operator. In each iteration, the solver performs the
following steps (x̃h denotes the current approximate solu-
tion):

1. Relax Ah x̃h ≈ bh,
2. Compute residual rh = bh −Ah x̃h,
3. Restrict residual to the coarse grid: r2h = R2h

h rh,
4. Solve residual equation on the coarse grid: A2he2h = r2h,
5. Interpolate error to the fine grid: ẽh = Ih

2he2h,
6. Apply correction to the solution: x̃h = x̃h + ẽh,
7. Relax Ah x̃h ≈ bh.

Pre- and post-smoothing (steps 1 and 7) usually involves one
or two relaxation iterations. Applying the two-grid method
recursively for step 4 leads to a multigrid V-cycle: The re-
laxation is performed on ever coarser grids 2h, 4h, 8h, ....
On the coarsest grid, for step 4 a conjugate gradient solver
or a direct solver can be used. In order to adequately rep-
resent cuts on the coarser levels, the grid hierarchy can be
constructed in a way similar to the hierarchical construction
of composite finite elements (see Figure 10).

6. Summary of Techniques for Cutting Simulation

Since there exist so many different techniques for simulating
cuts in deformable bodies, in the following we try to pro-
vide a comprehensive overview of these techniques accord-
ing to a few specific categories. The overview is presented
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Reference Geometry Deformation Solver Scenario Remark

Bielser et al. [BMG99, BG00, BGTG04] Tet., refinement Mass-spring Explicit/Semi-implicit Interactive Basic tet. refinement
Cotin et al. [CDA00] Tet., deletion Tensor-mass Explicit Interactive Hybrid elastic model
Mor & Kanade [MK00] Tet., refinement FEM Explicit Interactive Progressive cutting
Nienhuys et al. [NFvdS00, NFvdS01] Tet., boundary splitting/snapping FEM Static (CG solver) Interactive FEM with a CG solver
Bruyns et al. [BSM∗02] Tet., refinement Mass-spring Explicit Interactive An early survey
Zhong et al. [ZWP05] Tet., deletion FEM Static (direct solver) Interactive Static FEM with a direct solver
Wu & Heng [WH05] Tet., refinement FEM Static (CG + direct solver) Interactive CG + direct solver
Steinemann et al. [SHGS06] Tet., refinement + snapping Mass-spring Explicit Interactive (Fig. 16 a) Refinement + snapping
Chentanez et al. [CAR∗09] Tet., refinement FEM Implicit (CG solver) Interactive (Fig. 16 d) Needle insertion
Lee et al. [LPO10] Tet., deletion FEM Static (direct solver) Interactive Direct solver + condensation
Courtecuisse et al. [CJA∗10, CAK∗14] Tet., deletion/refinement FEM Implicit (CG solver) Interactive (Fig. 16 c,e) Surgery applications
Li et al. [LZW∗14] Tet., refinement FEM Explicit Interactive Volumetric images

Molino et al. [MBF04] Tet., duplication FEM Mixed explicit/implicit Offline Basic virtual node algorithm
Sifakis et al. [SDF07] Tet., duplication FEM Offline (Fig. 15 a) Arbitrary cutting
Wang et al. [WJST14] Tet., duplication FEM Offline Redevelopment

Jeřábková & Kuhlen [JK09] Tet. XFEM Implicit (CG solver) Interactive Introduction of XFEM
Turkiyyah et al. [TKAN09] Tri. 2D-XFEM Static (direct solver) Interactive XFEM with a direct solver
Kaufmann et al. [KMB∗09] Tri./Quad. 2D-XFEM Semi-implicit Offline (Fig. 15 c) Enrichment textures

Frisken-Gibson [FG99] Hex., deletion ChainMail Local relaxation Interactive Linked volume
Jeřábková et al. [JBB∗10] Hex., deletion CFEM Implicit Interactive CFEM
Dick et al. [DGW11a] Hex., refinement FEM Implicit (multigrid) Offline/Interactive (Fig. 15 d) Linked octree, multigrid solver
Seiler et al. [SSSH11] Hex., refinement FEM Implicit Interactive Octree, surface embedding
Wu et al. [WDW11, WBWD12, WDW13] Hex., refinement CFEM Implicit (multigrid) Interactive (Fig. 16 b, f) Residual stress, collision

Wicke et al. [WBG07] Poly., splitting PFEM Implicit Offline (Fig. 15 b) Basic polyhedral FEM
Martin et al. [MKB∗08] Poly., splitting PFEM Semi-implicit Offline Harmonic basis functions

Pauly et al. [PKA∗05] Particles, transparency Meshfree Explicit Offline Fracture animation
Steinemann et al. [SOG06] Particles, graph-based diffraction Meshfree Offline/Interactive (Fig. 15 e) Splitting fronts propagation
Pietroni et al. [PGCS09] Particles, extended visibility Meshfree Interactive Splitting cubes algorithm
Jung & Lee [JL12] Particles, connectivity graph Meshfree Semi-implicit Interactive Dynamic BVHs

Table 1: An overview of cutting techniques outlined in this report.

Figure 12: Plot of publications of techniques summarized in Table 1 in chronological order.

in Table 1. In particular, we classify techniques according to
the discretization and the modeling of cuts (Geometry), the
deformable model (Deformation), the time integration and
numerical solver (Solver), and the intended application sce-
nario (Scenario). We further give some remarks on specific
properties of these techniques.

In Table 1 the different techniques are grouped into six
categories. In the first category are techniques building on
tetrahedral discretizations. It can be observed that these tech-
niques are intended primarily for medical applications. The
second and third categories comprise techniques building

upon the virtual node algorithm and extended finite ele-
ments, respectively. In the fourth category are techniques
using hexahedral discretizations. Into the fifth and sixth cat-
egory, respectively, fall papers using polyhedral discretiza-
tions and meshfree methods.

Note that considering the specified discretization, in the
approaches using CFEs, duplication of elements is used on
the composite element level, but initially the topological dis-
continuity is represented by element deletion [JBB∗10] or
link disconnection after element refinement [WDW11] on
the finest level.
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Figure 12 depicts the chronological appearance of the dis-
cussed techniques with respect to the underlying discretiza-
tion and physical model. From this it can be observed that
the majority of publications in the field address mesh-based
approaches, and that there seems to be a clear trend to-
wards physically accurate simulations using finite elements.
Whereas approaches based on a tetrahedral discretization are
constantly used from the beginning, approaches using a hex-
ahedral discretization have emerged more recently.

We show representative simulation results for each group
in Figures 15 and 16. Figure 15 shows scenarios simu-
lated offline by (a) the virtual node algorithm, (b) the poly-
hedral finite element method, (c) the extended finite ele-
ment method, (d) the hexahedral finite element method on
an octree grid, and (e) the meshfree method. Figure 16
shows interactive simulation scenarios in various medical
contexts, such as (a) ablating a polyp in a hysteroscopy sim-
ulator, using element refinement together with snapping of
vertices (including a realistic texturing of the cutting sur-
faces [BZH∗05]), (b) virtual soft tissue cutting and shrink-
age simulation, by modeling the residual stress in biologi-
cal tissues, (c) real-time simulation of a brain tumor resec-
tion, using an asynchronous pre-conditioner, (d) needle in-
sertion in a prostate brachytherapy simulator with a paral-
lelized CG solver, (e) real-time simulation of laparoscopic
hepatectomy dealing with complex contacts, and (f) haptic-
enabled real-time virtual cutting of high-resolution soft tis-
sues, using composite finite elements and a multigrid solver.

7. Collision Handling and Haptic Rendering

Besides the simulation of deformable bodies, collision han-
dling as well as the haptic rendering of cutting are two im-
portant issues in a virtual cutting system. In the following,
we briefly cover these topics with the intention to expose
challenges of cutting-related research problems. Collision
response between separated bodies is analogous to standard
deformable body simulation without cutting, i.e., collisions
can be resolved by penalty-based methods (i.e., by introduc-
ing repulsion forces that are scaled according to penetration
depth or penetration volume), or by constraint-based meth-
ods (i.e., by enforcing non-penetration by solving a linear
complementarity problem).

7.1. Collision Detection

Collision detection for general deformable bodies has been
widely studied and an excellent survey is given by Teschner
et al. [TKH∗05]. These techniques are primarily designed
for objects with fixed topology, and most of these tech-
niques need an intensive pre-process to build acceleration
data structures. Although, in principle, these methods can
also be applied in the context of virtual cutting, the re-
initialization of the acceleration structures when topologi-
cal changes are applied strongly limits their usability. In this

section, we discuss the special requirements on collision de-
tection approaches in virtual cutting scenarios, and discuss
methods specially designed to meet these requirements.

In virtual cutting simulation, new volumetric elements are
created on-the-fly, and new surfaces are exposed. To handle
these dynamically created geometric primitives, it is neces-
sary to rebuild or update acceleration data structures such as
boundary volume hierarchies. Moreover, as a result of cut-
ting, an object may be incrementally split into several sep-
arated objects. It is therefore necessary to consistently de-
tect both inter- and intra-collisions. Consequently, ideal so-
lutions for collision detection for virtual cutting are meth-
ods that do not rely on heavy pre-computation, detect both
self-collisions and collisions between different bodies, and
provide a quantitative measure of the penetration for robust
collision response.

In several simulators using the SOFA frame-
work [FDD∗12] (e.g., [JBB∗10, CAK∗14]), collision
detection is performed by using layered depth images
(LDIs) [HZLM01, HTG04, FBAF08]. LDIs do not require
preprocessing of surface meshes, and can be efficiently
generated in each simulation step by parallel rasterization
on the GPU. LDIs sample a closed manifold object by
casting a set of parallel rays and enumerating the inter-
sections between each ray and the object. Along each
ray, the line segment from an odd intersection (entering
the object) to an even intersection (leaving the object) is
considered as part of the object. By comparing the LDIs
of two objects, the intersection volume and its gradient
can be computed and employed in collision response. For
detecting self-collisions, the intersections are classified
as entering and leaving based on the angle between the
forward ray and the surface normal at the intersection
point. One open question of LDIs is the representation of
thin objects, such as surgical scalpels. Since LDIs do not
support non-closed manifold meshes, it would be necessary
to use rasterization at extremely high-resolution in order to
sufficiently represent thin features.

Wu et al. [WDW13] proposed an efficient collision detec-
tion algorithm particularly tailored to composite finite ele-
ment simulation of cuts. In the broad phase, potentially col-
liding pairs of a deformed volumetric element and a dis-
placed surface vertex are identified by using a spatial hash-
ing approach [THM∗03]. All surface vertices in the simu-
lation environment, including vertices of a thin scalpel, are
treated in a uniform way. For each potentially colliding el-
ement/vertex pair, the surface vertex is back-transformed to
its position in the reference configuration using the interpo-
lation weights of the vertex with respect to the volumetric
element. The penetration at this position is evaluated from a
distance field in the reference configuration (which is locally
updated during cutting), and forward-transformed to the de-
formed configuration for collision response. It was shown
that by checking the coarse composite elements, rather than
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the underlying fine hexahedral elements, a significant per-
formance gain can be obtained. The results also demon-
strate that smooth collision response can be achieved for de-
formable bodies using a hexahedral discretization, despite of
the presence of staircase boundaries.

Bounding volume hierarchies (BVHs) are an efficient
data structure to accelerate collision detection. However, the
tightness of bounding volumes and the culling efficiency de-
grade significantly in case of large deformations and topo-
logical changes. Especially in the context of fracture simu-
lation, several methods have been proposed to optimize the
reconstruction/updating of BVHs. To efficiently insert/delete
geometric primitives, Otaduy et al. presented a method to
dynamically reconstruct BVHs, as opposed to reconstructing
them from scratch [OCSG07]. The hierarchies are balanced
by simple local operations for progressive fractures. BVHs
for large scale fracture simulation was studied in [HSK∗10].
Recently, Glondu et al. [GSM∗12] demonstrated real-time
brittle fracture animations based on a combination of locally
updated distance fields and sphere trees for adaptive col-
lision detection, together with an approximation of modal
analysis for fracture simulation [GMD13].

Jung et al. proposed a method to reconstruct BVHs for
meshfree simulation of cuts, where an undirected graph
is maintained to encode the connectivity of simulation
nodes [JL12]. The BVH reconstruction is triggered by the
event that an object is completely excised into two pieces.
This event is detected by examining the node connectivity:
In a breadth-first traversal starting from an arbitrary node,
if at least one node of the object is not visited during the
traversal, the excision event is reported.

7.2. Haptic Rendering of Cutting

Haptics provides an intuitive interface to interact with the
simulated deformable bodies and conveys rich information
about the dynamics directly to the user. This is especially
useful in medical simulations [CMJ11]. While haptics has
been mentioned in many cutting simulators, few provide a
sufficient description on the implementation and evaluation.
Realistic haptic rendering of cutting is a challenging task due
to the required high update rates of haptic rendering and the
complex physical interaction between the cutting tool and
soft tissues.

First, haptic rendering requires update rates of 1 kHz or
higher, in order to achieve (perceived) smooth force feed-
back [SCB04]. It was reported that users can perceive dif-
ferences at update rates between 500 Hz and 1 kHz [BOY-
BJK90]. More fundamentally, the update rate is closely re-
lated to the stability of the haptic system, i.e., a human-in-
the-loop system consisting of the user, the (digitally con-
trolled) haptic device, and the (time-discrete) virtual envi-
ronment. The latency inherent in time-discrete systems can
lead to unstable behaviors (e.g., vibrations). We refer to the

haptics literature [CGSS93, CB94] for a detailed explana-
tion. The sufficient condition of passivity and thus stability
of the haptic device for a viscoelastic virtual wall (the sim-
plest virtual environment) is given in [CS97] as

∆T <
2(b−B)

K
, (18)

where ∆T is the sampling period, b is the inherent damping
of the device, and K and B are the stiffness and damping of
the virtual wall, respectively. This condition implies that a
high update rate is very necessary to simulate the interaction
with stiff virtual objects.

Equation 18 states the stability for haptic interaction
where the cutting tool is simply represented by a single
point. For a general cutting tool which may simultaneously
contact the deformable body at several locations, it is nec-
essary to modulate the overall contact stiffness, considering
the limited impedance offered by haptic devices. To this end,
rather than directly mapping the position of the virtual tool
from the position signal read from the haptic device, it is
customary to separate these two positions, and virtually cou-
ple them by a spring (and a damper). This virtual coupling
approach results in the simulation-based haptic rendering:
The movement of the virtual tool is driven by the coupling
force, which tries to align the virtual tool with the haptic sty-
lus, and the interaction force (e.g., the cutting force) between
the virtual tool and deformable bodies. The coupling force,
rather than the interaction force is sent to the haptic device.
In this way the stability of the device can be easily ensured
by tuning the coupler [MPT99]. It also enables that the hap-
tic simulation and the deformation/cutting simulation run at
different update rates. We refer to a recent survey on hap-
tic rendering [OGL13] for a detailed explanation of different
rendering paradigms. The virtual coupling scheme is suc-
cessfully employed in bone drilling [WWWZ10] and in soft
tissue cutting [WWD14] to compute feedback forces which
can be rendered stably.

Second, the physical cutting mechanism (i.e., the frac-
turing of soft tissues driven by cutting tools) is largely un-
known, especially considering the complex material proper-
ties and various cutting tools such as needles, blades, scis-
sors, or punchers. Compared to the physical world, where
cuts are induced by the internal stresses resulting from the
force interaction between the deformable object and the
scalpel, the cutting approaches so far are purely geometry-
based: The tissues are cut by geometric intersection tests, as
discussed in Section 2.1. It can be interpreted as modeling an
infinitely sharp scalpel, which can induce arbitrary stresses
and thus immediately penetrates the object. In contrast, in
the physical world, the object would deform under the in-
fluence of the increasing force exerted by the scalpel, be-
fore the scalpel eventually penetrates. Modeling a more re-
alistic interaction between the object and the scalpel is part
of ongoing research, for example in biomedical engineer-
ing [CDL07]. Using penalty-force-based collision handling,
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Figure 13: Left: Experiment setup. To cut a liver model
the user manipulates a haptic device that is mapped to a
scalpel. Right: High quality surface rendering. Bottom: A
sequence of images from a live recording, available at
http://wwwcg.in.tum.de/research/research/projects/real-
time-haptic-cutting.html.

an initial attempt to simulate this effect is to employ a virtu-
ally extended scalpel shape [JBB∗10]. The enlarged scalpel
penetrates into the deformable object before the real scalpel
penetrates, thus leading to a deformation before the object
is cut. The enlargement of virtual tools is similarly used in
bone drilling simulation [WWWZ10].

An approach to obtain an intuitive feedback force is to
employ a velocity-proportional force model [WWD14]. In-
tuitively, if the user moves the scalpel with a high speed
against the deformable object, (s)he feels a large resistant
force. The force direction is opposite to the direction of
movement, and the force magnitude is proportional to both
the speed of movement and the contact volume between the
scalpel and the deformable object. Another possible solution
is the data-driven approach [HKSH09].

8. Application Study on Cutting Simulation

In the following application study we intend to shed light on
the performance of physically-based cutting simulation and,
by this, to assess the model resolution that can be handled
in interactive scenarios requiring update rates of 20-30 Hz.
We restrict ourselves to the analysis of one specific simula-
tion approach for which a highly optimized implementation
is available. Even though this approach has limitations, we
believe that it allows for a very good estimation of the sim-
ulation efficiency that can be achieved when the model of
linear elasticity is used.

Figure 13 shows our experiment setup in which we simu-
late a cut in a linear elastic liver model. All experiments were
performed on a standard desktop PC equipped with an Intel
Xeon X5560 processor (a single core was used) and 8 GB
main memory.

We analyze three variants of the hexahedral finite element
approach proposed by Dick et al [DGW11a]. It uses the

Figure 14: From left to right: Simulation of cuts using finite
elements on a uniform hexahedral grid, finite elements on
an adaptive octree grid, and composite finite elements on an
adaptive octree grid.

corotational formulation of finite elements, which simulates
linear dependencies between the components of stress and
strain, and considers the geometric non-linearity by respect-
ing per-element rotations in the strain computation. While
finite element discretizations enable high accuracy, hexahe-
dral elements are well suited for constructing a mesh hier-
archy that can be used by a geometric multigrid solver to
achieve optimal convergence rates. On the other hand, since
hexahedral simulation elements are not aligned with the ob-
ject boundaries, approaches using unstructured tetrahedral
simulation grids might be favorable when smooth boundary-
aware discretizations of the simulation domain are required.
For instance, to perform accurate collision detection and re-
sponse. In all of our experiments, a high-resolution surface
is generated from the cut object using the dual contouring
algorithm on the hexahedral grid, and this surface is used for
rendering and collision detection [WDW13].

Our first variant uses finite elements on a uniform hexahe-
dral grid and realizes cuts by simply disconnecting elements
along element faces. A high-resolution finite element model
consisting of 173,843 hexahedral elements (566,493 DOFs)
on a 82×83×100 uniform grid is used as our reference so-
lution (see Fig. 14 (left)). We simulate the cut by instantly
bringing the cutting tool into its final position and perform-
ing all required operations like finding and disconnecting
edges in the simulation grid, FE matrix assembly, and nu-
merical multigrid solver execution. In particular, we per-
form 2 V-cycles including 4 pre- and post-smoothing Gauss-
Seidel relaxation steps, which reduces the error to below 1%.
Note that while cutting on a uniform grid does not add new
elements, the number of DOFs is increased, since some of
the originally shared element vertices become separated ver-
tices due to the cut.

The second variant uses finite elements on an adaptive oc-
tree grid. This grid is constructed by starting with a uniform
coarse hexahedral grid, which is adaptively refined along
the initial object boundary and the cut, until a user-selected
level is reached. For this variant we have set the resolution
of the initial coarse grid and the refinement depth such that
in the refined regions the grid resolution of the first variant
is reached. The third variant uses the same adaptive grid as
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Uniform Adaptive Composite
(2 levels)

Coarse resolution 21×21×25 21×21×25
Refined resolution 82×83×100 82×83×100 82×83×100

# Cells (initial) 173 843 40 080 3 439
# DOFs (initial) 566 493 129 162 13 557

# Cells (added due to cut) 0 1 596 39
# DOFs (added due to cut) 2 037 6 438 318

Octree subdivision (t1) 0 13.29 13.39
Surface meshing (t2) 1.26 1.26 1.24

FE matrices (t3) 29.57 7.05 20.99
Multigrid hierarchy (t4) 40.34 10.09 2.06

Solver (t5) 2 033.09 581.66 40.61

Simulation per cut (
∑5

i=1 ti) 2 104.26 613.35 78.29

Table 2: Timings (in milliseconds) for cutting simulations
using finite elements on a uniform hexahedral grid, finite el-
ements on an adaptive octree grid, and composite finite ele-
ments on an adaptive octree grid.

the second one, but instead of standard finite elements, it
uses composite finite elements at the resolution of the ini-
tial coarse grid [WDW11]. Since the refined elements are
used only to correct the coarse grid simulation, consider-
ably higher performance is achieved. The last variant is in-
tended to demonstrate the trade-offs between highest accu-
racy and speed in interactive scenarios when employing the
principle of homogenization for linear elasticity [KMOD09].
Since the adaptive variants restrict the element refinement
to a user-selected depth, alternative (offline) approaches like
extended finite elements [JK09, KMB∗09] can be favorable
in applications where cuts should be modeled at sub-grid ac-
curacy.

Figure 14 (middle) shows the same cut as before, but now
the second variant is used to simulate the cut. We start with a
21×21×25 uniform grid. Initially, this grid is refined adap-
tively along the object boundary via two levels of subdivi-
sion. When the cut is simulated, the grid is further refined
along the cut using the same refinement depth, resulting in
41,676 hexahedral elements (135,600 DOFs).

In the last experiment (see Fig. 14 (right)) we start with
the same initial grid as in the second experiment, and we ap-
ply exactly the same adaptive grid refinement along the ob-
ject boundary and the cut. However, the adaptively generated
elements are not considered as DOFs in the simulation, but
they are used to assemble the coarse grid matrices accord-
ing to their contributions. Thus, the simulation is performed
using 3,439 composite elements (13,557 DOFs).

Table 2 lists the times that are consumed by the different
processes in each experiment. It can be seen that even though
a large number of DOFs can be simulated in roughly 2 sec-
onds using a uniform simulation grid, the grid resolution has
to be reduced about a factor of 4 in each dimension to make
the uniform grid suitable for interactive scenarios. Via the
adaptive octree grid the cut can be simulated at almost no

visual difference to the high-resolution reference solution.
Due to the restriction of element refinements along the ini-
tial object boundary and the cut, the overall simulation time
can be reduced by a factor of 3.5. Using composite finite el-
ements, the number of simulation elements to be considered
by the numerical solver can be decreased further, making
this approach suitable for interactive scenarios. Despite the
low number of DOFs to be solved for, the simulation result
is in very good agreement with the results generated by the
other variants. It is clear, however, that due to the reduced
number of DOFs, the simulated deformations cannot exactly
match the high-resolution reference in general.

Table 2 further indicates that surface meshing does not
have any impact on the overall performance. This is because
it works only on the boundary elements. Since the effective
resolution of the boundary elements is the same in all three
experiments, surface meshing always consumes the same
amount of time. It can be seen that in addition to the time
consumed by the multigrid solver, especially in the interac-
tive variant the adaptive grid refinement (t1) and the assem-
bly of the finite element matrices (t3) take up a considerable
amount of the overall time. In this variant, the time required
to generate the multigrid hierarchy (t4) is rather low due to
the low resolution of the simulation grid. This variant re-
quires a grid hierarchy from the finest level to the coarse
simulation level as well for assembling the FE matrices on
the simulation grid. The time for updating this part of the
hierarchy is counted in t3 for this variant.

9. Discussion and Conclusion

In this report we have reviewed the current state-of-the-art
in computer-aided simulation of cuts in deformable bodies.
We have discussed distinct geometry and topology represen-
tations, specifically-tailored finite element approaches, and
meshfree methods, with respect to accuracy, robustness, and
computational efficiency.

The analysis of current techniques indicates a clear trend
towards physically-based simulations. From our experience
this trend is driven by the application domains in which vir-
tual cutting is applied. Especially in virtual surgery simula-
tors, which are used for training and preoperative planning,
doctors are more and more demanding for reliable simula-
tions that can accurately predict the behavior of soft tissue
undergoing cuts and deformations thereof. Thus, going be-
yond this STAR we see the urgent need for a benchmark that
is tailored to the problem of virtual cutting simulation and
that can be used to assess simulation techniques quantita-
tively.

Furthermore, especially in medical applications the ac-
curate modeling of real-world and patient-specific material
is becoming of ever increasing importance. Going beyond
the model of linear elasticity and homogeneous material,
soft tissues exhibiting non-linear, anisotropic, viscoelastic
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and even viscoplastic behavior [Hum03] need to be consid-
ered by interactive simulators in the future. However, even
though it is known in principle how to model such tissue
types physically, we see the efficient numerical simulation
of these types as one of the most important research ques-
tions for the future.

One possibility to achieve interactive cutting simulation
even for complex tissue types is the use of dedicated par-
allelization strategies on multi-core and multi-GPU archi-
tectures. On single GPUs, the parallelization of deformable
body simulation has already shown significant performance
improvements [DGW11b, CJA∗10]. The layout of numeri-
cal solvers across multiple CPU or GPU nodes, however, is
extremely challenging. In particular for the parallelization
of an initially sequential solver, typically frequent commu-
nication between the nodes is required, letting bandwidth
and latency become quickly the bottleneck. It is therefore
required to develop parallel solvers that are particularly tai-
lored to such computing architectures by reducing the com-
munication between the nodes. A promising approach that
needs further investigation are domain decomposition meth-
ods, which divide the problem into subproblems that can be
solved independently.

Interactive simulation frame rates can also be achieved by
model reduction techniques, as having been demonstrated
in a number of engineering [NACC08] and also graphics
applications [BJ05]. The idea is to carefully approximate
a large system of equations with a much smaller system
(i.e., to reduce the number of DOFs), without significantly
sacrificing accuracy. A major difficulty of applying these
techniques in the context of interactive cutting scenarios is
the fact that determining the reduced system is typically
very compute-intensive, so that in practice at least the cut-
ting zone is non-reducible and must be tackled fully, with-
out reduction. A possible direction thus is to couple model
reduction for reducible zones and full simulation for non-
reducible zones [KGRB13, NAG∗12].

Another direction of research is the development of ap-
proaches for modeling the physical interaction between a
scalpel and soft tissues accurately [MH01,CDL07,MRO08].
This can greatly contribute to the realistic haptic rendering
of cutting forces. For simplicity, most virtual cutting tech-
niques assume that the material is separated as long as it is
swept by a cutting tool. In the physical world, however, we
can observe that there is a deformation of soft tissues before
a cut happens. The simulation of this kind of tool-object in-
teraction may benefit from general contact resolution tech-
niques [HVS∗09, AFC∗10, SH12].

Finally, the discussion of techniques in this report has re-
vealed that two major, and somehow opposing, requirements
reflect in the design of cutting techniques. On the one hand,
one seeks to use unstructured spatial object discretizations to
accurately model a cut. This has led to geometric techniques
using tetrahedral or polyhedral meshes, which are re-meshed

irregularly along the cut. On the downside, the re-meshing
step becomes very elaborate for arbitrary cutting paths, and
it increases the number of simulation elements significantly.

On the other hand, to achieve high performance of the
numerical solver used to simulate the dynamic behavior of
the cut body, structured simulation grids have turned out to
be favorable. Scalable solvers exhibiting linear complexity
in the number of supporting vertices have been achieved
via geometric multigrid methods on semi-regular hexahe-
dral grids. While building geometric multigrid hierarchies
on hexahedral grids is simple, on unstructured grids the con-
struction of such hierarchies is extremely complicated and
very time-consuming. In general, however, elements in hex-
ahedral grids are not aligned with the object boundaries, in-
troducing modeling inaccuracies along these boundaries.

In our opinion it is one of the most interesting questions
whether adaptive spatial discretizations can be found that
give rise to efficient numerical solution techniques at the
same time allowing for an accurate alignment of simulation
elements along the object boundaries.

The research on interactive virtual cutting is not lim-
ited to the computer graphics community. In computa-
tional mechanics, where research on cutting and fractur-
ing was initially more concerned with simulation accuracy
(e.g. accurate material models, accurate boundary condi-
tions [MBB∗11], accurate cutting force models [MMSE11],
goal-oriented error estimates [GENR∗14]), there is a re-
cent trend towards interactive surgery simulations [NAG∗12,
JJMW13]. It will be interesting to investigate how such mod-
els can be integrated into efficient simulators. We envisage
that cross-fertilization with computational mechanics will
further advance virtual cutting simulation towards its appli-
cation in pre-operative planning and surgery training.
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Appendix A: Physically-based Simulation of Deformable
Bodies

In this appendix we briefly summarize the basics of the lin-
ear theory of elasticity, the finite element method, meshfree
methods, and time integration schemes underlying virtual
cutting approaches.

A.1 Elasticity Theory

The theory of elasticity studies how elastic materials deform
under external forces. The deformation behavior is mathe-
matically described by a system of partial differential equa-
tions.

Deformation Given an elastic object in the undeformed ref-
erence configuration Ω ⊂�3, the deformation is modeled by
a displacement vector field u : Ω→ �3, x 7→ u(x), where x
denotes the Euclidean coordinates of a material point in the
object’s reference configuration, yielding the deformed con-
figuration {x + u(x) | x ∈Ω}.

A strain tensor describes the local (differential) change of
shape of the deformable object. In particular, the Green-St.
Venant strain tensor is defined as

εG =
1
2

(
∇u + (∇u)T + (∇u)T∇u

)
. (19)

εG is a symmetric second order tensor, and is non-linear due
to its quadratic term (∇u)T∇u.

Material model A stress tensor describes the internal forces
acting in the deformable body. For elastic materials, the
stress is a function of the strain, referred to as material
model.

Linear elasticity The linear theory of elasticity is based on
the assumption of small displacements and a linear relation-
ship between stress and strain. This finally leads to a linear
system of equations, which can be solved efficiently. By us-
ing a corotational strain formulation which removes the per-
element rigid body rotation part from the deformation before
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the strain is computed, the linear theory can also be used to
accurately simulate deformations exhibiting large rotations.
Linear elasticity is therefore widely employed in interactive
graphics applications.

By assuming that the displacements are small (i.e.,
‖∇u‖ � 1), the quadratic term in the Green-St. Venant strain
tensor εG can be neglected, leading to a linear strain tensor,
known as the infinitesimal strain tensor

ε =
1
2

(
∇u + (∇u)T

)
. (20)

The linear relationship between stress and strain is de-
scribed by

σ = C : ε, (21)

where σ is the symmetric second-order stress tensor, and C
is the fourth-order elasticity tensor, representing the material
properties. For an isotropic material, the deformation is in-
dependent of the material’s spatial orientation, reducing the
stress-strain relationship to the form

σ = 2µε+λ tr(ε) I, (22)

where the Lamé constants λ and µ are related to the Young’s
modulus E and the Poisson’s ratio ν by λ = Eν

(1+ν)(1−2ν) and
µ = E

2(1+ν) (I is a 3×3 identity matrix). Rearranging the en-
tries of the symmetric tensors as vectors, the linear mate-
rial model can be written as matrix-vector product, e.g., for
isotropic materials as

σ11
σ22
σ33
σ12
σ13
σ23

︸  ︷︷  ︸
σ

=



2µ+λ λ λ

λ 2µ+λ λ

λ λ 2µ+λ

µ

µ

µ

︸                                               ︷︷                                               ︸
C



ε11
ε22
ε33

2ε12
2ε13
2ε23

︸   ︷︷   ︸
ε

.

(23)

Equations of equilibrium The static elasticity problem con-
sists of determining a displacement vector field u : Ω→ �3

such that at each material point the surplus of the internal
body forces—expressed by the divergence of the stress ten-
sor field—balances the external body forces fb according to

−div σ(ε(u)) = fb in Ω \∂Ω, (24)

and that the boundary conditions

u = u0 on ΓD, (25)

σ(ε(u)) n = fs on ΓN , (26)

on the boundary ∂Ω = ΓD
⊎

ΓN are satisfied, where n is the
unit outer normal on ∂Ω. The boundary conditions consist of
Dirichlet boundary conditions (Eq. 25), which prescribe the
displacement u0 on ΓD, and Neumann boundary conditions
(Eq. 26), which prescribe surface tractions fs on ΓN .

For the simulation of dynamic motion, inertial forces are

incorporated into the equilibrium equation according to

ρ ü−div σ(ε(u)) = fb, (27)

where ρ is the material density, and ü denotes the acceler-
ation. The boundary conditions are analogous to the static
case. In addition, initial conditions prescribing the displace-
ment and the velocity of the deformable body at the initial
time are required [Sla02].

A.2 The Finite Element Method

The finite element method (FEM) is one of the most popular
approaches to solve the systems of partial differential equa-
tions arising from elasticity theory. A detailed explanation
of finite element procedures for mechanics can be found in
textbooks (e.g., [Bat96]), and a concise introduction of FEM
in medical simulation is given in [BN98].

Weak formulation of the elasticity problem Multiplying
the dynamic equilibrium equation (Eq. 27) with an arbitrary
test function v and integrating over the simulation domain Ω

leads to the variational formulation∫
Ω

ρv · üdx+

∫
Ω

ε(v) :σ(ε(u))dx−
∫

Ω

v · fbdx = 0 ∀v (28)

(here, fs ≡ 0 is assumed for simplicity). The formulation for
the static elasticity problem can be obtained by omitting the
first term corresponding to the inertial forces.

Finite element discretization In the finite element method,
the simulation domain Ω is decomposed into a finite set of
elements. Typically, triangles or quadrilaterals are employed
for discretizing a 2D domain, while tetrahedra or hexahedra
are employed in the 3D case.

Building on such a spatial discretization, FEM approxi-
mates the continuous displacement field by means of inter-
polation of the displacements at the vertices of the finite el-
ement grid. Specifically, the element shape functions φe

i (x)
interpolate the displacement field within an element Ωe from
the element’s vertices according to

u|Ωe (x) =

nv∑
i

φe
i (x)ue

i = Φe(x)ue. (29)

where nv is the number of simulation nodes of this element,
Φe(x) the element shape matrix

Φe(x) =


φe

1(x)
φe

1(x)
φe

1(x)
. . .

φe
nv

(x)
φe

nv
(x)

φe
nv

(x)

 ,
(30)

and ue = (ue
1, . . . ,u

e
nv

)T the linearization of the displacement
vectors at the element’s vertices.

Linear and trilinear interpolation are good candidates as
shape functions for the tetrahedral and hexahedral discretiza-
tion, respectively. They fulfill the requirements imposed by
the finite element method: a) Partition of unity: Σ

nv
i φ

e
i (x) = 1;
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b) Linear field reproduction: Σ
nv
i φ

e
i (x)xi = x; and c) Kro-

necker delta function property:

φe
i (x j) =

1 if j = i,
0 otherwise.

(31)

Condition a) is compulsory, while condition b) and c) are
preferable to simplify the treatment of boundaries.

Using the shape functions, and expressing the strain by
ε(u)|Ωe (x) = Be(x)ue, where Be is the element strain matrix

Be(x) =



∂φe
1

∂x1
∂φe

1
∂x2

∂φe
1

∂x3
∂φe

1(x)
∂x2

∂φe
1(x)
∂x1

∂φe
1(x)
∂x3

∂φe
1(x)
∂x1

∂φe
1(x)
∂x3

∂φe
1(x)
∂x2

. . .

∂φe
nv

∂x1
∂φe

nv
∂x2

∂φe
nv

∂x3
∂φe

nv (x)
∂x2

∂φe
nv (x)
∂x1

∂φe
nv (x)
∂x3

∂φe
nv (x)
∂x1

∂φe
nv (x)
∂x3

∂φe
nv (x)
∂x2


,

(32)
it can be derived that the weak formulation Eq. 28 leads to a
system of ordinary differential equations,∫

Ωe
ρ(Φe)TΦedx︸               ︷︷               ︸

Me

üe +

∫
Ωe

(Be)TCBedx︸              ︷︷              ︸
Ke

ue =

∫
Ωe

(Φe)T fbdx︸            ︷︷            ︸
f e

,

(33)
(formally written for a single element). Me, Ke, and f e are
called the element mass matrix, the element stiffness matrix,
and the element load vector, respectively.

Assembling the per-element equations with respect to the
global indices of the shared vertices among the elements
yields a system of ordinary differential equations for the
entire object, i.e., Mü + Ku = f . It is common to apply a
velocity-dependent Rayleigh damping term which leads to

Mü + Du̇ + Ku = f , (34)

where D is calculated as D = αM +βK. α,β ≥ 0 are the mass
and the stiffness proportional damping coefficient. Note that
Neumann boundary conditions (prescribing tractions) are
naturally incorporated into the weak formulation and do not
need further treatment. In contrast, Dirichlet boundary con-
ditions (prescribing displacements for specific vertices) must
be explicitly enforced by removing these vertices as DOFs
from the finite element formulation. To ensure a consistent
treatment of free and fixed vertices, these vertices can be
later incorporated into the finally resulting linear system of
equations by adding the equation Iui = u0

i for each fixed ver-
tex i.

Corotational strain formulation The infinitesimal strain
tensor works under the assumption small displacements. It
is not rotation invariant, and interprets rotations as strains,
leading to the introduction of artificial stresses. To realisti-
cally simulate deformations with large rotations—as they are
typically occurring in virtual cutting applications—without

resorting to the non-linear Green-St. Venant strain tensor, a
rotationally invariant infinitesimal stain formulation [RB86],
known as corotational stain formulation, is widely applied in
graphics applications [MDM∗02]. The idea is to rotate the
deformed finite elements back to align with their initial ori-
entation in the reference configuration before the strain is
computed. This leads to the equation

[Re]Ke([Re]T(xe + ue)− xe) = f e (35)

(for the static case), where [Re] denotes a nv×nv block diag-
onal matrix, and each diagonal entry is the element rotation
matrix Re, determined from the current element deforma-
tion. The rotation matrix can be computed by minimizing the
distance between the rotated deformed and the undeformed
configuration [GW08]. Rearranging this formulation for ue

leads to [Re]Ke[Re]Tue = f e + [Re]Ke(xe − [Re]Txe), which
can be incorporated into Eq.34. It should be noted that the
corotational strain formulation does not change the structure
of the system matrix, however, it is required to update the en-
tries at each simulation time step since the element rotations
are determined per time step.

A.3 Meshfree Methods

In contrast to FEMs which operate on a finite element mesh
with an explicit connectivity among the nodes, meshfree
methods maintain node adjacency by defining an influence
region for each node, described by a weight kernel. The
weight kernel for the node i located at the position xi can
be defined as, for example [MKN∗04],

ω(x, xi,ri) =


315

64πr9
i
(r2

i −‖xi − x‖2)3 if ‖xi − x‖ < ri,

0 otherwise,
(36)

where ri is the influence radius. The value of the weight ker-
nel rapidly decays with increasing distance between the sim-
ulation node xi and the point x where the function is to be
evaluated. The radius of influence ri should be sufficiently
small to adequately discretize displacement gradients. It is
typically chosen in such a way that the influence region in-
cludes a constant number of neighbors of the node xi.

Meshfree methods model objects as a set of interacting
nodes which carry properties, e.g., mass, volume, and den-
sity. The mass mi carried by a node is initialized as mi =

sr3
i ρ, where ρ is the material density, and s is a scaling con-

stant for all nodes, chosen such that the estimated density
ρi = Σ jm jω(x j, xi,ri) is close to ρ. The volume covered by a
node is calculated by vi = mi/ρi.

In meshfree methods, the displacement field is approxi-
mated as u(x) = Σiφi(x)ui from the linearized displacement
vectors ui at a set of (nearby) nodes {xi} and the shape
functions φi(x) [FM03]. The meshfree shape functions can
be approximated by using, for example, the moving least
squares (MLS) scheme [LS81]. MLS is a method to recon-
struct continuous functions from a set of sample points based
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on their distribution, i.e., the connectivity of samples are not
required. Given the weight kernel ω, MLS yields the follow-
ing shape functions [PKA∗05]

φi(x) = ω(x, xi,ri)pT(x)[H(x)]−1 p(xi), (37)

where p denotes a complete polynomial basis p(x) =

[1 x ... xn]T, and [H(x)]−1 is the inverse of the moment ma-
trix defined as

H(x) = Σiω(x, xi,ri)p(xi)pT(xi). (38)

Since the inversion of a matrix is involved in the shape
functions, a direct evaluation of their derivative is non-
trivial. An alternative is to approximate the gradient ∇u
at nodes using a MLS formulation with a linear ba-
sis [MKN∗04]. Representing the neighbors of the node xi
as {x j}, the displacement of neighbor nodes can be approxi-
mated by

ũ j = ui +∇u|xi xi j, (39)

where xi j = x j− xi, and ∇u|xi is the displacement gradient at
the node xi. The sum of the squared differences between the
approximated values ũ j and the known values u j is

e = Σ j(ũ j −u j)2ω(x j, xi,ri). (40)

Minimizing this error function by assigning a zero value to
its derivative with respect to ui, it can be derived that

∇u|xi = A−1
(
Σ j(u j −ui)xi jω(x j, xi,ri)

)
, (41)

where the matrix A3×3 = Σ jxi jxT
i jω(x j, xi,ri).

With the gradient of the displacement field computed, the
strain tensor can be evaluated at the node xi according to the
Green-St. Venant (Eq. 19) or the infinitesimal (Eq. 20) strain
formulation. The stress tensor for linear elastic materials can
be computed using Eq. 21.

Internal forces can be derived as the negative gradient of
the strain energy density with respect to the displacement
field,

f int = −∇u(
1
2
ε : σ). (42)

By integrating this function over the volume vi covered by
the node xi, it can be derived that this yields the following
form of internal forces [MKN∗04],

f int
i = 2vi

(
I +

(
∇u|xi

)T
)
σi A−1

(
Σ jxi jω(x j, xi,ri)

)
. (43)

The dynamic simulation problem can then be formulated
as

f int
i + f ext

i −miü = 0, (44)

where f ext
i denotes the external forces applied to the node xi.

To animate the boundary surface which is for example
represented by a surface mesh, the displacement u of a sur-
face vertex can be computed based on the displacements ui

of its nearby simulation nodes as

u(x) =
1

Σiω(x, xi,ri)
Σiω(x, xi,ri)

(
ui +∇u|xi (x− xi)

)
. (45)

A.4 Time Integration

There exist implicit and explicit time integration schemes to
numerically integrate the time-dependent system of ordinary
differential equations arising in dynamic deformation simu-
lations, i.e., Eq. 34. Here, we take the implicit Euler and the
explicit Euler time integration scheme as examples.

Implicit time integration allows for using a reasonably
large time step size dt without introducing numerical prob-
lems. Using a finite difference discretization of the time
derivatives, the implicit Euler time integration leads to

M
ut+dt −2ut + ut−dt

dt2
+D

ut+dt −ut−dt

2dt
+Kut+dt = f t+dt. (46)

This equation can be rewritten as

K̃ut+dt = f̃ t+dt, (47)

with

K̃ = K + M
dt2 + D

2dt ,

f̃ t+dt = f t+dt + M 2ut−ut−dt

dt2 + D ut−dt

2dt .
(48)

This linear system of equations can be solved using numeri-
cal solvers as presented in Section 5.

The explicit (or forward) Euler time integration scheme
approximates the elastic force Ku based on the displacement
of the previous time step, and thus avoids solving a system
of equations. In explicit time integration, the equations of
motion are decoupled and each DOF is evaluated indepen-
dently. It is written as

ut+dt =

( M
dt2

+
D

2dt

)−1 (
f t+dt −Kut + M

2ut −ut−dt

dt2
+ D

ut−dt

2dt

)
.

(49)
However, the stability of explicit schemes is only guaranteed
for sufficiently small time steps, expressed by the Courant
condition, which gives an upper limit for the time step size
according to

dt < h
√

ρ

λ+ 2µ
. (50)

Here h denotes the smallest distance of two vertices in the
reference configuration, ρ is the material density, and λ, µ
are the Lamé constants. In general, the stiffer the simulated
materials are, the smaller must be the time step size. This
implies that a large number of simulation steps are required
to advance an interactive simulation. The problem aggra-
vates in the situation of a fine discretization (i.e., a small
h). Therefore, from a stability point of view, explicit integra-
tion schemes are not well suited for interactive applications
which require large time steps (e.g., 10 ∼ 100 ms).
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Figure 15: Offline progressive cutting scenarios simulated by (a) the virtual node algorithm on a tetrahedral mesh (image cour-
tesy of Sifakis et al. [SDF07] c©2007 ACM), (b) the polyhedral finite element method (image courtesy of Wicke et al. [WBG07]
c©2007 WILEY), (c) the extended finite element method on quads (image courtesy of Kaufmann et al. [KMB∗09] c©2009
ACM), (d) the hexahedral finite element method on an adaptive octree grid [DGW11a], and (e) the meshfree method (image
courtesy of Steinemann et al. [SOG06] c©2006 Eurographics). Copyrighted materials, image a, b, c, and e, are reprinted with
permissions from ACM, WILEY, ACM, and Eurographics, respectively.

Figure 16: Interactive simulation in medical contexts. (a) Ablating a polyp in a hysteroscopy simulator (image courtesy of
Steinemann et al. [SHGS06] c©2006 IEEE). (b) Virtual soft tissue cutting and shrinkage simulation [WBWD12] (abdomen
photographs courtesy of Dr. med. Laszlo Kovacs). (c) Real-time simulation of a brain tumor resection (image courtesy of
Courtecuisse et al. [CAK∗14] c©2014 Elsevier). (d) Needle insertion in a prostate brachytherapy simulator (image courtesy of
Chentanez et al. [CAR∗09] c©2009 ACM). (e) Real-time simulation of laparoscopic hepatectomy (image courtesy of Courte-
cuisse et al. [CJA∗10] c©2010 Elsevier). (f) Haptic-enabled virtual cutting of high-resolution soft tissues [WWD14]. Copyrighted
materials, image a, c, d, and e, are reprinted with permissions from IEEE, Elsevier, ACM, and Elsevier, respectively.
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