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Abstract

We present a novel continuous optimization method to the discrete problem of quadtree optimization. The optimization aims at
achieving a quadtree structure with the highest mechanical stiffness, where the edges in the quadtree are interpreted as structural
elements carrying mechanical loads. We formulate quadtree optimization as a continuous material distribution problem. The
discrete design variables (i.e., to refine or not to refine) are replaced by continuous variables on multiple levels in the quadtree
hierarchy. In discrete quadtree optimization, a cell is only eligible for refinement if its parent cell has been refined. We propose
a continuous analogue to this dependency for continuous multi-level design variables, and integrate it in the iterative optimization
process. Our results show that the continuously optimized quadtree structures perform much stiffer than uniform patterns and the
heuristically optimized counterparts. We demonstrate the use of adaptive structures as lightweight infill for 3D printed parts, where
uniform geometric patterns have been typically used in practice.
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1. Introduction

In 3D printing the interior of 3D models is often filled with
repetitive geometric patterns. A typical rectangular pattern in a
rocking horse model is illustrated in Fig. 1 (a). The sparsity of
the pattern affects the amount of material usage and the stiffness
of the fabricated shape; A denser pattern results in a mechan-
ically stiffer print while consuming more material. To design
lightweight and stiff prints, an intuitive option is to start with a
sparse pattern and selectively subdivide the cells according to
stress analysis, leading to an adaptive structure.

The problem under consideration is the finding of a quadtree
structure that maximizes the stiffness regarding prescribed me-
chanical loads, under the constraint of a given material budget.
This is a discrete optimization problem: for each cell, to re-
fine or not to refine it. Accurately solving discrete optimization
problems is challenging, especially when the number of design
variables is large [1]. Moreover, in (discrete) quadtree opti-
mization the number of design variables is not constant: new
cells (and thus design variables) are created as the refinement
progresses. A greedy approach to the discrete quadtree opti-
mization problem is suggested in [2] where (rhombic) cells are
selectively refined based on a heuristic criterion. While it has
been demonstrated that the greedy approach can find a quadtree
structure that is stiffer than a uniform pattern with the same
amount of material, it is known that heuristic refinements result
in a local optimal solution, and it might be away from the global
optimum [2].

To address the limitations of the greedy approach, in this pa-
per we present a novel continuous optimization method to the
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Figure 1: The rocking horse is filled with a uniform rectangular pattern (a)
and the continuously optimized quadtree structure (b). The adaptive quadtree
is three times stiffer than the uniform pattern, regarding the prescribed loads
which are indicated by blue arrows; The compliances of the uniform and adap-
tive pattern are 131.6 and 43.5, respectively. The two designs use the same
amount of material. The bottom row shows the continuous quadtree at four
iterations.

discrete problem of quadtree optimization. We relax the binary
design variables in optimization to continuous values between
0 and 1. By penalizing intermediate values, the continuous op-
timization eventually converges to a black-white binary design.
In the discrete quadtree setting, a cell can only be considered
for refinement if it has been created by refining its parent cell.
This dependency is encoded in the continuous quadtree set-
ting by a continuous function which smoothly filters out con-
figurations that violate this dependency. Our numerical results
demonstrate a good convergence of the continuous formula-
tion. A continuously optimized quadtree is shown in Fig. 1 (b),
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while a sequence during the optimization is shown in the bot-
tom row. The continuously optimized quadtree structures per-
form much stiffer than uniform patterns and the heuristically
optimized counterparts. In summary, our key contributions are
as follows:

• We extend quadtrees by assigning multi-level continuous
design variables to indicate their refinement. This exten-
sion, which can be called a continuous quadtree, lends it-
self to gradient-based numerical optimization.

• We propose a refinement filter to encode the dependency
of continuous design variables among multiple levels in
the quadtree hierarchy.

• We demonstrate the effectiveness of quadtree optimization
for designing lightweight and stiff infill structures for 3D
printing.

The remainder of this paper is organized as follows. After
reviewing related work in Section 2, in Section 3 we present
the continuous quadtree optimization method, and in Section 4
two extensions. Numerical and physical tests are presented in
Section 5, before conclusions are drawn in Section 6.

2. Related Work

We consider quadtree optimization as a structural topology
optimization problem, as the topology of structures represented
by the quadtree changes during the design optimization pro-
cess. Topology optimization aims at finding the material layout
which yields for instance the highest stiffness under given con-
straints. In contrast to shape optimization where the topology is
prescribed and remains constant, topology optimization allows
for the creation of new voids. For a thorough review of topology
optimization techniques, let us refer to the survey articles [3, 4].

Optimizing spatially adaptive structures clearly distinguishes
from previous use of adaptive mesh refinement in topology op-
timization, where the motivation is to reduce the intensive finite
element analysis by reducing the number of elements. Spatial
adaptive meshes (i.e., quadtree in 2D and octree in 3D) are of-
ten employed in numerical analysis to attain a required accu-
racy for a minimum amount of computation [5]. In the context
of topology optimization, Maute and Ramm [6] are among the
first to employ adaptive techniques to decrease the number of
design variables and to generate smooth structures. Some re-
cent developments along this direction include adaptive polyg-
onal elements (e.g., [7]), and error control in adaptive meshing
(e.g., [8, 9]). The adaptive mesh used in the literature represents
the finite elements for elasticity analysis, and its refinement cri-
terion is based on estimated errors. The obtained structures are
similar, if not identical, to the structures optimized with uni-
form fine meshes. In contrast, here the adaptive mesh, its edges
in particular, represents the physical structures to be obtained
from optimization. The structural refinement respects global
measures on the structural stiffness and the material volume.
The structures our method is aiming at spread across the entire
closed-walled design domain (cf Fig. 1 (b)).

One application of quadtree optimization is to obtain
lightweight and stiff infill structures for 3D printing. Topol-
ogy optimization has been recognized as an important design
method for 3D printing, as it fully exploits the manufactur-
ing flexibility to create lightweight and mechanically optimal
structures [10]. A recent focus in this area has been on in-
corporating manufacturability constraints (e.g., overhang an-
gle [11, 12, 13, 14] and length scale [15]) and thus eliminating
post-processing of the numerically optimized structures.

Infill is not a constraint in 3D printing, but rather a fea-
ture that can be exploited for improving mechanical stabil-
ity [16, 17]. A summary of inner structures and their opti-
mization is presented in the survey paper by Livesu et al. [18].
The mechanically optimized structures take different forms, in-
cluding frames [19, 20, 21], honeycomb-like structures [22],
non-uniform shells [23, 24, 25], foams [26, 27], micro- and
lattice structures [28, 29, 30, 31] and bone-mimicking struc-
tures [17, 32, 33]. In this work we focus on subdivision struc-
tures which allow for an intuitive control over some geomet-
ric features. For instance, the interior quadtree structures have
a uniform thickness, which simplifies tool-path generation in
3D printing. The cells have a fixed and prescribed orienta-
tion, which has been used to ensure self-supportability [2]. Fur-
thermore, the coarsest and finest grids effectively determine the
maximum and minimum void sizes, respectively. The uniform
thickness and the minimum void size have positive implications
on thermal effects in the additive manufacturing process [34].
Going beyond 3D printing, structures with a certain level of reg-
ularity facilitate the production of large engineering structures
in architectural geometry [35]. In this case, the final quadtree
can be interpreted as being assembled from frames. The frames
have only a few variations in size, and thus each variation can
be massively produced [36].

3. Continuous Quadtree Optimization

Given a 2D design domain, our method aims at finding the
quadtree structure that is stiffest regarding prescribed mechan-
ical loads on the domain boundary. The design domain is de-
fined by an input shape. In this section we take a simple rectan-
gular shape to explain the algorithm. The optimization is sub-
ject to a constraint on the limit of material usage. Before we
formulate this optimization problem in Section 3.2, we present
in Section 3.1 the design parameterization, including the design
variables of quadtree refinements, the finite elements for struc-
tural analysis, and the mapping from design variables to finite
elements. A refinement filter encoding the dependency of de-
sign variables is proposed in Section 3.3.

3.1. Design Parameterization

We formulate quadtree optimization as a continuous material
distribution problem. To this end, a hybrid discretization is em-
ployed. As illustrated in Fig. 2 for a rectangular design domain,
the hybrid discretization is composed of a quadtree grid which
encodes the topology information, and a discretization by uni-
form square elements which encode material distribution and
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Figure 2: Illustration of design parameterization on a rectangular shape using
the quadtree grid (a) and the underlying finite elements (b) which are used for
evaluating mechanical response of the design.

upon which elasticity analysis is performed. In Fig. 2 (a) the red
lines form the initial coarse grid where refinements start from.
The coarse cells are mapped to blocks of square elements in the
finite element grid in Fig. 2 (b). Within each block, elements in
the first boundary layer are assigned solid (i.e., a density value
of 1.0), indicated by the red-shaded elements. Adjacent coarse
cells share a common edge, and this edge in the finite element
grid has a thickness of two elements — one element on each
side.

For illustrative purpose a few cells in the bottom right of the
domain are refined, creating plus-shaped (”+”) sub-structures.
The plus-shapes are also mapped to solid elements, with colours
indicating the different levels of refinement. In this example
two refinement levels are applied. A further refinement level
would merge the edges and form fully solid blocks in the finite
element grid. While such fully solid blocks cause no problem
for the optimization, here we exclude this situation for the pur-
pose of ensuring a uniform thickness inside the design domain.

3.1.1. Multi-level Design Variables (xk)
To enable numerical optimization, we extend quadtree by as-

signing a continuous design variable xi, j ∈ [0, 1] to each of the
cells in the quadtree grid, with xi, j = 1 (resp. xi, j = 0) re-
ferring to a refinement (resp. non-refinement) for the cell with
the 2D indices (i, j) in the 2D grid (Fig. 2). The design vari-
able (x) effectively indicates the intensity of the plus-shaped
sub-structure that will be created if the cell under considera-
tion is refined. Design variables are assigned on each level in
the quadtree, denoted by xk

i, j, where k indicates the level. The
initial coarse grid is denoted as the first level. From the first
level downwards, the resolution of cells, which is also the res-
olution of the design field, is doubled on each dimension from
the previous level. Denoting the resolution on the k-th level by
(nk

x, n
k
y), and the resolution of the initial coarse grid by (n0

x, n
0
y),

the relation can be written as

(nk
x, nk

y) = (2k−1 n0
x, 2k−1 n0

y), k = 1, ..., k̄, (1)

where k̄ is the maximum allowed refinement level. For a coarse
block of 2m × 2m elements, k̄ is calculated by

k̄ = m − 2. (2)

When the refinement level reaches k̄, it creates voids in the size
of 22 finite elements.

3.1.2. Mapping (xk → ρ)
The mapping from the design variables (xk) on the quadtree

grid to the density field (ρ) in finite element analysis has been
illustrated in Fig. 2. The density of finite elements is mapped
from the design variables xk, k = 1, ..., k̄, corresponding to plus-
shaped sub-structures (blue and green in Fig. 2). The bound-
ary of the initial coarse cells also maps to density of finite ele-
ments (red in Fig. 2). For compactness in the following formu-
lation, let us denote the initial coarse cells by x0 which has the
same resolution as the design variable on the first level x1, i.e.,
(n0

x, n
0
y) = (n1

x, n
1
y). Corresponding to a solid coarse frame for

ensuring a minimum stiffness of the quadtree structure, x0 has
a constant value x0

e = 1 for all coarse cells.
Reshaping the multi-level design fields xk |nk

x×nk
y
, k = 0, ..., k̄,

and the density field ρ|2mn0
x×2mn0

y
into column vectors xk and ρ,

respectively, the mapping can be written compactly by a trans-
formation,

ρ =
k̄∑

k=0
Tk xk. (3)

The transformation Tk is a sparse matrix with a dimension of
22mn0

xn0
y × nk

xnk
y. The non-zero entries in Tk have a constant

value of 1, and concern the specific finite elements that will be
assigned by refinements xk

i, j. Since the non-zero entries have a
unit value, the transformation assigns the same value of the re-
finement to the affected finite elements. For instance, an inter-
mediate refinement by xk

i, j = 0.5 leads to intermediate densities
for the corresponding finite elements, ρ = 0.5.

3.2. Optimization Problem
With the multi-level continuous refinement field (xk) and the

physical density field (ρ) defined in the previous subsection, we
can write the compliance minimization problem as follows:

min
x

c = UT K(ρ)U, (4)

s.t. K(ρ)U = F, (5)
V(ρ) =

∑
∀e
ρeve ≤ V∗, (6)

xk
i, j ∈ [0, 1]. (7)

In contrast to classic topology optimization [37, 38] where the
design variable is the density field (ρ), for obtaining quadtree
structures we consider the refinement field (xk) as new design
variables. The density vector ρ is calculated from xk by Eq. (3).

The objective is to minimize the compliance (c), which is
equivalent for stiffness maximization. The first constraint is the
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Figure 3: When the refinement rules are not applied, the optimized structure
consists of many suspended structures, indicated by the red arrows. The com-
pliance value is 136.1.

static equation of linear elasticity. K, U, and F are stiffness
matrix, displacement vector, and force vector, respectively. The
global stiffness matrix K is assembled from element stiffness
matrix ke. The modified SIMP interpolation model [39] is used
to compute the element stiffness matrix:

ke = Ee(ρe)k0, (8)
Ee(ρe) = Emin + ρ

p
e (E0 − Emin), (9)

where k0 is the element stiffness matrix for an element with
unit Young’s modulus. E0 is the stiffness of the material. Emin
is a very small stiffness assigned to void elements in order to
prevent the stiffness matrix from becoming singular. And p is
a penalization factor (typically p = 3) which is introduced to
ensure black-and-white solutions [37]. The second constraint
measures the volume occupied by solid elements. ve is the unit
volume for each element, and V∗ is the maximum allowed vol-
ume. The last constraint restricts the design variables to take a
value between 0 (non-refinement) and 1 (refinement).

Solving this optimization problem for a cantilever beam
presents the design shown in Fig. 3. The beam is fixed on
the left side, while a force is applied on the right side in the
middle. The prescribed material volume is 40% of the design
domain. The optimized structure show crossing sub-structures
which correspond to the design variables. However, many of
such sub-structures (pointed out by the red arrows) are sus-
pended. This is due to the fact that the (imaginary) fine cells
are refined, even though the fine cells themselves have not yet
been created from refining their parent cells. The suspended
sub-structures don’t effectively carry mechanical loads, and dis-
obey the intention to create quadtree-like mechanical structures.
In the following, a refinement filter is proposed to encode the
recursive refinement rules, and thus to effectively filter out such
suspended sub-structures.

3.3. Refinement Filter (xk → x̃k)
In creating a quadtree the refinement is only applicable to a

cell that already exists. This implies dependency of the refine-
ment of a fine cell on the refinement of its parent cell. In the
binary setting, the refinement of a cell on the k−th level, xk

i, j,
will not happen, as long as the refinement of its parent cell has
not yet taken place, i.e., xk−1

i−1, j−1 = 0. Here (i−1, j−1) refers to

x1
1,1

x2
1,1 x2

2,1 x2
1,2 x2

2,2

x3
3,1 x3

4,1 x3
3,2 x3

4,2

Level 1

Level 2

Level 3

i
j

Figure 4: Illustration of dependency in recursive refinement. For instance, x3
4,1

depends on x2
2,1 which depends on x1

1,1.

the indices of the parent cell. To encode this dependency in the
setting of continuous design variables, we introduce a filtered
design variable x̃k

i, j:

x̃k
i, j = min(xk

i, j, x̃
k−1
i−1, j−1 ). (10)

In case of xk−1
i−1, j−1 = 0, i.e., the parent cell is not refined, the

filtered value is
x̃k

i, j = min(xk
i, j, 0) = 0. (11)

This min function thus restricts the design variable on the fine
level when the parent cell has not been refined. In case of
xk−1

i−1, j−1 = 1, the filtered value is unaffected,

x̃k
i, j = min(xk

i, j, 1) = xk
i, j. (12)

Applying refinement recursively creates a quadtree with mul-
tiple levels. The dependency thus goes from the fine cell
through all the intermediate levels to one of the coarse cells
on the first level. For instance, consider the design variable x3

4,1
illustrated in Fig. 4. The filtered value is x̃3

4,1 = min(x3
4,1, x̃

2
2,1),

where x̃2
2,1 = min(x2

2,1, x̃
1
1,1). At first glance this requests multi-

ple filters executed sequentially, leading to much complex sen-
sitive analysis afterwards. However, the recursive min functions
can be consolidated into an equivalent min function by taking in
as input all the involved arguments in the individual min func-
tions, i.e.,

x̃k
i, j = min

(
xk

i, j, xk−1
i−1, j−1 , ..., x1

i−k+1, j−k+1

)
. (13)

This consolidation does not introduce approximate error, and
significantly simplifies sensitivity analysis (cf. Appendix).

After the design variables have been filtered, the density vec-
tor, ρ, is updated. This is done by replacing design vector xk by
the filtered design vector x̃k in Eq. (3), i.e.,

ρ =
k̄∑

k=0
Tk x̃k. (14)
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Figure 5: Left: A randomly initialized design field shows many suspended structures. Middle: The suspended structures disappear when the refinement filter is
applied. Right: A balanced quadtree obtained by filtering out fine cells which are at least two levels smaller than one of its neighbours.

Figure 6: With the refinement filter the optimization creates a quadtree struc-
ture. The compliance value is 143.3.

The effect of the recursive refinement filter is visualized in
Fig. 5. On the left, the multi-level design variables are initial-
ized randomly with a value of 0 or 1. A few suspended sub-
structures can be observed in the left sub-figure, and they dis-
appear in the middle sub-figure. Fig. 6 shows the result of inte-
grating this filter into the optimization for the cantilever beam.
It is worth noting that Fig. 6 is not post-processed from Fig. 3;
The filter acts as a constraint that is implicitly integrated into
the iterative optimization process.

3.3.1. Smooth Approximation
Gradient-based numerical optimization necessitates differen-

tiable functions. To this end, the non-differentiable min func-
tion (Eq. (13)) is approximated by a smooth p-norm function,
with a negative exponent,

x̃k
i, j = min

(
xk

i, j, xk−1
i−1, j−1 , ..., x1

i−k+1, j−k+1

)
(15)

≈

(
1
k

k−1∑
l=0

(
xk−l

i−l, j−l

)pn
) 1

pn

. (16)

Here pn represents the p-norm exponent, to be distinguished
from the penalty p in SIMP interpolation (Eq. (9)). As pn

approaches negative infinity, the p-norm equals the minimum
value. The p-norm is normalized by a factor considering the
number of arguments, 1

k in this formulation. The normalization
reduces the approximation error when a practical pn value is not
infinite [17]. In our tests, we use pn = −16.

The indices of parent cells are needed in Eq. (16). When
using a regular discretization, the indices can be found by a
recursive function,

i−l = h(i,−l) = h(h(i,−l + 1),−1), (17)

where the function h is defined as

h(i,−1) = floor
(

1
2

(i + 1)
)
. (18)

4. Extensions

4.1. Balanced Quadtree

We provide an option to restrict the quadtree such that the
level difference between neighbouring cells is at most one,
known as balanced or restricted quadtrees. A balanced quadtree
maintains a smooth transition from fine cells to coarse cells. For
3D printed infill, a smooth transition is expected to make the
part more stable for uncertain loads.

In an unbalanced quadtree, the refinement of a cell depends
only on its parent cell (Eq. (10)). In the balanced quadtree, the
refinement additionally depends on the neighbours of its parent
cell. The refinement filter (Eq. (10)) is thus updated by

x̃k
i, j = min(xk

i, j, x̃k−1
i−1, j−1 , x̃k−1

i−1±1, j−1±1). (19)

Here, it is assumed that the indices i−1 ± 1 belong to [1, nk−1
x ]

and j−1 ± 1 belong to [1, nk−1
y ], otherwise the invalid arguments

are excluded. A consolidation of this recursive function is ob-
tained similar to Eq. (13). The recursive function can point to
the same coarser cell multiple times, due to the introduction of
neighbours. Only one copy of each dependent cell is included
in the consolidated filter. Since the encoding of neighbourhood
and hierarchy remains constant during the optimization, finding
the dependency is only performed once in the initialization.

The effect of the balanced refinement filter can be observed
in Fig. 5 (right). An optimized balanced quadtree for the can-
tilever beam is shown in Fig. 7. The three versions (i.e., Fig. 3,
Fig. 6 and Fig. 7) use the same amount of material. As more
restrictions on refinement are introduced, the compliance value
becomes larger, meaning that the stiffness is decreased. This
moderate sacrifice in stiffness is actually rewarded by a signif-
icant increase in robustness, which will be discussed in results
section (cf. Fig. 10).

4.2. Integration with other Filters

In density-based topology optimization using square ele-
ments, regulations such as density filter [40] or sensitivity fil-
ter [37] are often applied to get rid of checkerboard patterns
(i.e., regions of alternating black and white elements). In our
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Figure 7: A balanced quadtree structure obtained from optimizing a cantilever
beam. The compliance value is 165.7.

formulation, the refinement itself can be regarded as a regula-
tion, and the density/sensitivity filter is no longer necessary.

In topology optimization with continuous design variables,
projection filters are often applied to improve the convergence
of approaching a binary black-white design. Our continuous re-
formulation of refinement also benefits from such a projection.
In particular, we integrate the projection filter proposed in [41]:

x̄k
i, j =

tanh (βη) + tanh
(
β
(
xk

i, j − η
))

tanh (βη) + tanh (β (1 − η))
. (20)

Here β controls the sharpness of projection. In the limit of
β→ ∞ the projection approaches a discontinuous step func-
tion. We employ a continuation of this parameter. η ∈ [0, 1]
is the threshold value, and we choose η = 0.5.

5. Results

The method has been implemented based on the Matlab code
provided by Andreassen et al. [39]. The optimization problem
is solved using the method of moving asymptotes (MMA) [42]
and optimality criteria (OC). In our tests MMA yields a com-
pliance value that is about 2% smaller than the optimized value
from OC. MMA results are reported in this paper. Sensitiv-
ity analysis which is used in numerical optimization is given in
Appendix.

In the following we report numerical analysis on simple de-
sign domains in Section 5.1, compare results from continuous
and discrete optimization in Section 5.2, and discuss physical
tests in Section 5.3. The same parameters are used in all tests:
The SIMP penalization p = 3, the p-norm pn = −16, the thresh-
old for projection η = 0.5. The sharpness of projection β starts
with 1 and is increased up to 32, by doubling its value every 60
iterations. The maximum number of iterations is 400.

5.1. Numerical Analysis

5.1.1. Cantilever Beam
The first example is a cantilever beam that has appeared mul-

tiple times during the exposition of the method. The boundary
condition is illustrated in Fig. 3. The rectangular design domain
is initialized with a coarse grid of 8× 4. Each grid cell contains
64 × 64 square elements, leading to a finite element resolution

of 512 × 256 for the entire domain. The maximum refinement
level is 4.

Figure 8 shows a sequence of intermediate structures during
the optimization of a balanced quadtree structure. As the op-
timization progresses, the quadtree structure emerges from the
grey density distribution. To measure how close the continu-
ous density field is to a binary field, the sharpness factor [43] is
defined as

s =
4
n

∑
e

(ρe(1 − ρe)), (21)

where n is the number of finite elements. The sharpness factor
becomes 0.0 when the density values converge to a strict 0-1
solution, and it becomes 1.0 if all elements take a value of 0.5.
The optimized quadtree (Fig. 8 bottom right) has a sharpness
factor of 0.04, which corresponds the field where density values
on average take 0.01 or 0.99.

The convergence plots are shown in Fig. 9. The plot on the
left shows that the compliance value decreases almost mono-
tonically, except for a few jumps corresponding to the increase
of β in the Heaviside projection. The middle shows the volume
fraction during the process. The design variables are initialized
homogeneously with a value of 0.49 such that the volume frac-
tion of 0.4 has been satisfied from the beginning. The plot on
the right shows the convergence of sharpness. The optimization
is terminated at the iteration of 379 as the maximum change in
the density field becomes smaller than 1e−4.

One motivation to have quadtree structures is their potential
robustness in handling unexpected perturbation forces which
are not modelled in numerical optimization. Fig. 10 shows a
comparison on the three optimized structures: the unfiltered
structure (Fig. 3), the unbalanced quadtree (Fig. 6), and the
balanced version (Fig. 7). In this test, we simulate a small,
unexpected force. Its location moves along the top boundary
edge, while its magnitude is one tenth of the force which was
used in the deterministic structural optimization. The fixation
on the left boundary edge is unaltered in this test, but it shall
be noted that the fixation is also subject to uncertainty depend-
ing on the use scenario. The first half of the three curves is
very stable. As the force moves to the right side where the
structure becomes sparse, we observe oscillations in compli-
ance curves corresponding to the periodicity of the underlying
quadtree cells. The blue curve has a oscillation significantly
smaller than the other two, meaning that the balanced quadtree
is most robust.

5.1.2. MBB Beam
The second example is the MBB (Messerschmitt-Bölkow-

Blohm) design problem shown in Fig. 11. Due to symmetry
only the right half of the design domain is optimized. The pre-
scribed material volume is 30% of the design domain. The half
domain is initialized with a coarse grid of 12 × 4, where each
grid cell is composed of 64 × 64 elements, leading to a total of
768 × 256.

Figure 12 compares the quadtree structures obtained using
different refinement levels. The three rows from top to bottom
show optimized quadtree using a maximum refinement level of
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(a) It. 40, c = 317.2, s = 0.631 (b) It. 100, c = 249.8, s = 0.500 (c) It. 160, c = 215.4, s = 0.362

(d) It. 220, c = 177.9, s = 0.151 (e) It. 280, c = 169.2, s = 0.070 (f) It. 360, c = 165.7, s = 0.040

Figure 8: A sequence of the balanced quadtree during the optimization process. The number of iterations (It.), the compliance value (c), and the sharpness (s) are
reported.
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Figure 9: The convergence plots for the cantilever beam design (Fig. 8). From left to right: Convergence plot of compliance, volume fraction, and sharpness. The
jumps in curves are due to the β-continuation in the Heaviside projection.
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Figure 10: The three optimized structures (cf. Fig. 3, Fig. 6 and Fig. 7) are
tested under a small unexpected force, the location of which moves along the
top boundary edge from left to right. The balanced quadtree is most robust as
the corresponding curve (blue) shows the smallest oscillation.

three, four, and five, respectively. In each row, the left cor-
responds to the unbalanced refinement, while the right is ob-
tained in the setting of balanced refinement. Comparing left
and right, it can be found that the balanced quadtree (right) has
a larger compliance and a larger sharpness value than in the
unbalanced setting (left). This is due to the fact that the bal-

L

6L

Figure 11: Illustration of the MBB beam design problem.

anced refinement additionally involves the neighbours of the
parent cells, i.e., more restrictions on refinement. Comparing
the three rows, we observe smaller compliances when a larger
refinement level is applied. This is because a larger refinement
level increases the solution space. At a refinement level of five
(bottom), small cavities from the previous refinement (middle)
are filled with material. The optimizations with these different
settings all converge well, as can be seen from the convergence
plots in Fig. 13.

5.1.3. Bracket
The adaptive structure refinement works as well on curved

design domains. For a curved design domain, we simulate the

7



(a) Unbalanced quadtree, k̄ = 3, c = 1083.5, s = 0.002 (b) Balanced quadtree, k̄ = 3, c = 1127.9, s = 0.008

(c) Unbalanced quadtree, k̄ = 4, c = 571.6, s = 0.010 (d) Balanced quadtree, k̄ = 4, c = 711.5, s = 0.028

(e) Unbalanced quadtree, k̄ = 5, c = 449.0, s = 0.030 (f) Balanced quadtree, k̄ = 5, c = 586.1, s = 0.070

Figure 12: A comparison of unbalanced (left) and balanced quadtree (right) using a refinement level of, from top to bottom, three, four, and five.
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Figure 13: From left to right: The convergence of compliance, volume fraction, and sharpness for the MBB designs shown in Fig. 12.
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(a) Boundary condition (b) Uniform pattern (c = 566.2) (c) Balanced quadtree (c = 143.4)

Figure 14: Quadtree optimization on a curved design domain. The adaptively refined quadtree is 3.9 times stiffer than the uniform pattern.

smallest axis-aligned bounding box enclosing the curved do-
main. The voids outside the curved domain are assigned as
passive void elements, while a boundary layer with a thickness
of 2 elements are passive solid elements. Passive elements are
excluded from the design update. This requires modifying the
corresponding entries in the transformation matrix in Eq. (14).

Figure 14 (a) illustrates the dimension and boundary condi-
tions of the bracket design problem. It contains curved bound-
ary where a quadtree mesh is not conformal. The tight bound-
ing box of the bracket is discretized using a coarse grid of
12× 8, where each grid cell has 32× 32 elements, i.e., a total of
384 × 256 elements for the bounding box. First we uniformly
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v f = 0.20, c = 1919.9

v f = 0.30, c = 742.5

v f = 0.40, c = 449.6

v f = 0.50, c = 328.2

v f = 0.20, c = 1266.7

v f = 0.30, c = 571.6

v f = 0.40, c = 402.8

v f = 0.50, c = 312.0

Figure 15: Quadtree structures obtained by a greedy approach in the discrete formulation (left) and optimized in the continuous formulation (right). From top to
bottom the comparisons are made under an increasing volume fraction from 0.2 to 0.5.

refine the coarse grid by two level which is shown in Fig. 14 (b).
Its volume fraction is 33.02%. Using this volume fraction as a
constraint we perform adaptive structure optimization, allowing
three levels of refinement. The optimized quadtree is shown
in Fig. 14 (c). Numerical analysis suggests that the adaptive
quadtree is about 4 times stiffer than the uniform pattern.

5.2. Comparison to Greedy Approach

The quadtree structures optimized by the continuous for-
mulation are compared with those obtained by the greedy ap-
proach [2]. The greedy approach starts refining from the ini-
tial coarse grid, and performs selective refinement at odd iter-
ations and selective coarsening at even iterations. In each odd
iteration, following finite element analysis, the leaf cells in the
quadtree are sorted by their strain energy density. The first few
cells in this sorted list are then successively refined, until the
volume increase exceeds a small volume change, 0.4% in our
examples. Alternatively in each even iteration, following finite
element analysis, blocks of 22 leave cells, i.e., the cells on the
second finest level, are sorted by the averaged strain energy den-
sity. The last few cells in this sorted list are coarsened, until the

volume is decreased by 0.1%. The combination of refinement
and coarsening is found more optimal than purely refinement,
and thus serves a fair reference for comparison. The greedy
approach is only applied in the setting of unbalanced quadtree.

Figure 15 shows the optimized MBB structures by the greedy
approach (left) and by the continuous formulation (right). The
structures are compared under four different volume fractions.
The structures in the right column show some distinct dense and
sparse regions, to some extent similar to classic topology opti-
mization, while structures in the left column have regions of
alternating refined and non-refined cells, and the alternation vi-
sually appears a bit random. The quadtree structures optimized
by the continuous formulation consistently have a smaller com-
pliance value. The difference in compliance values is especially
significant when the volume fraction is small (cf. the top row).
The greedy approach takes 89, 160, 229, and 297 iterations to
achieve a volume fraction of 0.2, 0.3, 0.4, and 0.5, respectively,
while in the continuous optimization a maximum of 400 itera-
tions for each volume fraction is prescribed.
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v f = 28.02%, c = 577.2 v f = 26.76%, c = 364.6

v f = 26.16%, c = 115.1 v f = 25.98%, c = 1184.0

v f = 28.02%, c = 174.9 v f = 26.76%, c = 152.2

v f = 26.16%, c = 40.0 v f = 25.98%, c = 401.8

Figure 16: Digital structures (top two rows) and 3D printed models (bottom two rows).

5.3. Physical Test
We further perform physical tests to compare the stiffness

of uniform patterns and optimized quadtree structures. To this
end, we have 3D printed the structures with an Ultimaker 3,
which uses the Fused Deposition Modelling (FDM) process.
The printing material is PLA. The nozzle size is 0.4 mm. Fig. 16
shows the 3D printed models. For each pair, the volume taken
by the uniform pattern is prescribed as the volume limit for

quadtree optimization. The 2D models are scaled to fit within
a domain of 100 mm × 100 mm. They are then extruded to 3D
with a thickness of 5 mm.

The experimental setup is shown in Fig. 17. The models are
supported from beneath, while the clamp is used to keep their
position. During the physical test the models are pre-loaded
with a 5 Newton force. The force then increases at a rate of
10 N/s until it reaches 100 Newton. Fig. 18 shows the force-
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Figure 17: Physical test on the fabricated model.

displacement curves for the rocking hose and tooth models. In
both tests, the curve corresponding to the optimized quadtree
is much steeper, confirming that the optimized quadtree has a
much higher stiffness.

6. Conclusion

We have presented a continuous optimization method to de-
sign adaptively refined structures. The structures are refined
within a closed-walled design domain. The adaptive struc-
ture offers highly optimized stiffness for prescribed mechanical
loads, and outperforms the uniform patterns. Meanwhile the
adaptive structure spreads over the interior of the mechanical
part with controllable and smoothly varying void sizes, mak-
ing it stable for uncertain and small perturbation forces. Con-
tinuous optimization achieves solutions that are more optimal
compared to the greedy approach for solving the discrete for-
mulation. Additional tests confirm our method works as well
for multiple load cases and are left out for space reasons.

Our method for continuous quadtree optimization opens up
multiple directions. First, extending from quadtree to octree
is straightforward. In 3D the structural elements can be ei-
ther frames or walls, mapped from edges or faces of the oc-
tree. 3D rhombic structures that are refined using a greedy
approach have been reported in [2]. Second, it is very inter-
esting to design hierarchical structures in other forms, e.g., tri-
angles/hexagons, or even fractals. Third, to alleviate the in-
tensive computation in finite element analysis (especially for
3D), truss/beam elements and numerical homogenization will
be useful.
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Appendix: Sensitivity Analysis

The sensitivity analysis for gradient-based optimization is
presented in the following. By using the chain rule, the sen-
sitivity of the objective function c with respect to the design
variable xk is given by:

∂c
∂xk =

k̄∑
l=1

(
∂c
∂ρ

∂ρ

∂x̃l

∂x̃l

∂xk

)
. (22)

The first term ∂c/∂ρ is derived from adjoint analysis. The
individual entry is

∂c
∂ρe

= −p(ρe)p−1(E0 − Emin)uT
e k0ue. (23)

The second term can be evaluated from Eq. (14),

∂ρ

∂x̃l = Tl. (24)

The third term comes from the smoothed refinement filter,
Eq. (16). The non-zero entries (i.e., if l ≥ k) are calculated by

∂x̃l
i, j

∂xk
ik−l, jk−l

=
1
l

(
1
l

l−1∑
m=0

(
xl−m

i−m, j−m

)pn

) 1
pn
−1 (

xk
ik−l, jk−l

)pn−1
. (25)

The sensitivity of the volume V with respect to the design
variable xk is derived in a similar way:

∂V
∂xk =

k̄∑
l=k

(
∂V
∂ρ

∂ρ

∂x̃l

∂x̃l

∂xk

)
. (26)

Individual entries in the first term are given by

∂V
∂ρe

= ve, (27)

where ve is the unit volume for each element.

12

http://dx.doi.org/10.1002/nme.5461
http://dx.doi.org/10.1007/s00419-015-1106-4
http://dx.doi.org/10.1016/J.ENG.2016.02.006
http://dx.doi.org/10.1109/TVCG.2017.2655523
http://dx.doi.org/10.1111/cgf.13147
http://dx.doi.org/10.1145/2508363.2508382
http://dx.doi.org/10.1145/2508363.2508382
http://dx.doi.org/10.1016/j.cagd.2015.03.012
http://dx.doi.org/10.1145/3072959.3073619
http://dx.doi.org/10.1145/2601097.2601168
http://dx.doi.org/10.1145/2601097.2601168
http://dx.doi.org/10.1145/2897824.2925886
http://dx.doi.org/10.1111/cgf.12986
http://dx.doi.org/10.1111/cgf.13268
http://dx.doi.org/10.1111/cgf.13268
http://dx.doi.org/10.1145/2897824.2925922
http://dx.doi.org/10.1145/2897824.2925922
http://dx.doi.org/10.1145/3072959.3073638
http://dx.doi.org/10.1145/2766926
http://dx.doi.org/10.1145/2766937
http://dx.doi.org/10.1016/j.cad.2017.05.016
http://dx.doi.org/10.1145/3095815
http://dx.doi.org/10.1016/j.cma.2017.08.018
http://dx.doi.org/10.1016/j.cad.2017.05.013
http://dx.doi.org/10.1007/978-1-4419-1120-9_11
http://dx.doi.org/10.1007/978-1-4419-1120-9_11
http://dx.doi.org/10.1016/j.cma.2015.05.005
http://dx.doi.org/10.1007/s001580050176
http://dx.doi.org/10.1007/s001580050176
http://dx.doi.org/10.1109/TVCG.2015.2502588
http://dx.doi.org/10.1007/s00158-010-0594-7
http://dx.doi.org/10.1007/s00158-010-0594-7
http://dx.doi.org/10.1002/nme.1064
http://dx.doi.org/10.1007/s00158-010-0602-y
http://dx.doi.org/10.1007/s00158-010-0602-y
http://dx.doi.org/10.1002/nme.1620240207
http://dx.doi.org/10.1007/s00158-006-0087-x

	Introduction
	Related Work
	Continuous Quadtree Optimization
	Design Parameterization
	Multi-level Design Variables (xk)
	Mapping (xk )

	Optimization Problem
	Refinement Filter (xk k)
	Smooth Approximation


	Extensions
	Balanced Quadtree
	Integration with other Filters

	Results
	Numerical Analysis
	Cantilever Beam
	MBB Beam
	Bracket

	Comparison to Greedy Approach
	Physical Test

	Conclusion

